Ƭ AudioClassificationArgs: BaseArgs
& AudioClassificationInput
| LegacyAudioInput
inference/src/tasks/audio/audioClassification.ts:8
Ƭ AudioToAudioArgs: BaseArgs
& { inputs
: Blob
} | LegacyAudioInput
inference/src/tasks/audio/audioToAudio.ts:7
Ƭ AutomaticSpeechRecognitionArgs: BaseArgs
& AutomaticSpeechRecognitionInput
| LegacyAudioInput
inference/src/tasks/audio/automaticSpeechRecognition.ts:10
Ƭ DocumentQuestionAnsweringArgs: BaseArgs
& DocumentQuestionAnsweringInput
& { inputs
: DocumentQuestionAnsweringInputData
& { image
: Blob
} }
inference/src/tasks/multimodal/documentQuestionAnswering.ts:14
Ƭ FeatureExtractionArgs: BaseArgs
& { inputs
: string
| string
[] }
inference/src/tasks/nlp/featureExtraction.ts:6
Ƭ FeatureExtractionOutput: (number
| number
[] | number
[][])[]
Returned values are a multidimensional array of floats (dimension depending on if you sent a string or a list of string, and if the automatic reduction, usually mean_pooling for instance was applied for you or not. This should be explained on the model’s README).
inference/src/tasks/nlp/featureExtraction.ts:19
Ƭ FillMaskArgs: BaseArgs
& FillMaskInput
inference/src/tasks/nlp/fillMask.ts:6
Ƭ ImageClassificationArgs: BaseArgs
& ImageClassificationInput
| LegacyImageInput
inference/src/tasks/cv/imageClassification.ts:7
Ƭ ImageSegmentationArgs: BaseArgs
& ImageSegmentationInput
| LegacyImageInput
inference/src/tasks/cv/imageSegmentation.ts:7
Ƭ ImageToImageArgs: BaseArgs
& ImageToImageInput
inference/src/tasks/cv/imageToImage.ts:7
Ƭ ImageToTextArgs: BaseArgs
& ImageToTextInput
| LegacyImageInput
inference/src/tasks/cv/imageToText.ts:8
Ƭ InferenceProvider: typeof INFERENCE_PROVIDERS
[number
]
Ƭ InferenceTask: Exclude
\<PipelineType
, "other"
>
Ƭ ModelId: string
HF model id, like “meta-llama/Llama-3.3-70B-Instruct”
Ƭ ObjectDetectionArgs: BaseArgs
& ObjectDetectionInput
| LegacyImageInput
inference/src/tasks/cv/objectDetection.ts:7
Ƭ ProviderMapping\<ProviderId
>: Partial
\<Record
\<WidgetType
, Partial
\<Record
\<ModelId
, ProviderId
>>>>
Name | Type |
---|---|
ProviderId | extends string |
inference/src/providers/types.ts:4
Ƭ QuestionAnsweringArgs: BaseArgs
& QuestionAnsweringInput
inference/src/tasks/nlp/questionAnswering.ts:6
Ƭ RequestArgs: BaseArgs
& { data
: Blob
| ArrayBuffer
} | { inputs
: unknown
} | { prompt
: string
} | { audio_url
: string
} | ChatCompletionInput
& { accessToken?
: string
; parameters?
: Record
\<string
, unknown
> }
Ƭ SentenceSimilarityArgs: BaseArgs
& SentenceSimilarityInput
inference/src/tasks/nlp/sentenceSimilarity.ts:8
Ƭ SummarizationArgs: BaseArgs
& SummarizationInput
inference/src/tasks/nlp/summarization.ts:6
Ƭ TableQuestionAnsweringArgs: BaseArgs
& TableQuestionAnsweringInput
inference/src/tasks/nlp/tableQuestionAnswering.ts:6
Ƭ TabularClassificationArgs: BaseArgs
& { inputs
: { data
: Record
\<string
, string
[]> } }
inference/src/tasks/tabular/tabularClassification.ts:5
Ƭ TabularClassificationOutput: number
[]
A list of predicted labels for each row
inference/src/tasks/tabular/tabularClassification.ts:17
Ƭ TabularRegressionArgs: BaseArgs
& { inputs
: { data
: Record
\<string
, string
[]> } }
inference/src/tasks/tabular/tabularRegression.ts:5
Ƭ TabularRegressionOutput: number
[]
a list of predicted values for each row
inference/src/tasks/tabular/tabularRegression.ts:17
Ƭ TextClassificationArgs: BaseArgs
& TextClassificationInput
inference/src/tasks/nlp/textClassification.ts:6
Ƭ TextGenerationStreamFinishReason: "length"
| "eos_token"
| "stop_sequence"
inference/src/tasks/nlp/textGenerationStream.ts:46
Ƭ TextToImageArgs: BaseArgs
& TextToImageInput
inference/src/tasks/cv/textToImage.ts:7
Ƭ TextToVideoArgs: BaseArgs
& TextToVideoInput
inference/src/tasks/cv/textToVideo.ts:9
Ƭ TextToVideoOutput: Blob
inference/src/tasks/cv/textToVideo.ts:11
Ƭ TokenClassificationArgs: BaseArgs
& TokenClassificationInput
inference/src/tasks/nlp/tokenClassification.ts:7
Ƭ TranslationArgs: BaseArgs
& TranslationInput
inference/src/tasks/nlp/translation.ts:6
Ƭ VisualQuestionAnsweringArgs: BaseArgs
& VisualQuestionAnsweringInput
& { inputs
: VisualQuestionAnsweringInputData
& { image
: Blob
} }
inference/src/tasks/multimodal/visualQuestionAnswering.ts:12
Ƭ ZeroShotClassificationArgs: BaseArgs
& ZeroShotClassificationInput
inference/src/tasks/nlp/zeroShotClassification.ts:7
Ƭ ZeroShotImageClassificationArgs: BaseArgs
& ZeroShotImageClassificationInput
| LegacyZeroShotImageClassificationInput
inference/src/tasks/cv/zeroShotImageClassification.ts:15
• Const
FAL_AI_SUPPORTED_MODEL_IDS: ProviderMapping
\<FalAiId
>
inference/src/providers/fal-ai.ts:7
• Const
INFERENCE_PROVIDERS: readonly ["fal-ai"
, "replicate"
, "sambanova"
, "together"
, "hf-inference"
]
• Const
REPLICATE_SUPPORTED_MODEL_IDS: ProviderMapping
\<ReplicateId
>
inference/src/providers/replicate.ts:7
• Const
SAMBANOVA_SUPPORTED_MODEL_IDS: ProviderMapping
\<SambanovaId
>
inference/src/providers/sambanova.ts:7
• Const
TOGETHER_SUPPORTED_MODEL_IDS: ProviderMapping
\<TogetherId
>
https://docs.together.ai/reference/models-1
inference/src/providers/together.ts:13
▸ audioClassification(args
, options?
): Promise
\<AudioClassificationOutput
>
This task reads some audio input and outputs the likelihood of classes. Recommended model: superb/hubert-large-superb-er
Name | Type |
---|---|
args | AudioClassificationArgs |
options? | Options |
Promise
\<AudioClassificationOutput
>
inference/src/tasks/audio/audioClassification.ts:14
▸ audioToAudio(args
, options?
): Promise
\<AudioToAudioOutput
[]>
This task reads some audio input and outputs one or multiple audio files. Example model: speechbrain/sepformer-wham does audio source separation.
Name | Type |
---|---|
args | AudioToAudioArgs |
options? | Options |
Promise
\<AudioToAudioOutput
[]>
inference/src/tasks/audio/audioToAudio.ts:38
▸ automaticSpeechRecognition(args
, options?
): Promise
\<AutomaticSpeechRecognitionOutput
>
This task reads some audio input and outputs the said words within the audio files. Recommended model (english language): facebook/wav2vec2-large-960h-lv60-self
Name | Type |
---|---|
args | AutomaticSpeechRecognitionArgs |
options? | Options |
Promise
\<AutomaticSpeechRecognitionOutput
>
inference/src/tasks/audio/automaticSpeechRecognition.ts:15
▸ chatCompletion(args
, options?
): Promise
\<ChatCompletionOutput
>
Use the chat completion endpoint to generate a response to a prompt, using OpenAI message completion API no stream
Name | Type |
---|---|
args | BaseArgs & ChatCompletionInput |
options? | Options |
Promise
\<ChatCompletionOutput
>
inference/src/tasks/nlp/chatCompletion.ts:9
▸ chatCompletionStream(args
, options?
): AsyncGenerator
\<ChatCompletionStreamOutput
>
Use to continue text from a prompt. Same as textGeneration
but returns generator that can be read one token at a time
Name | Type |
---|---|
args | BaseArgs & ChatCompletionInput |
options? | Options |
AsyncGenerator
\<ChatCompletionStreamOutput
>
inference/src/tasks/nlp/chatCompletionStream.ts:8
▸ documentQuestionAnswering(args
, options?
): Promise
\<DocumentQuestionAnsweringOutput
[number
]>
Answers a question on a document image. Recommended model: impira/layoutlm-document-qa.
Name | Type |
---|---|
args | DocumentQuestionAnsweringArgs |
options? | Options |
Promise
\<DocumentQuestionAnsweringOutput
[number
]>
inference/src/tasks/multimodal/documentQuestionAnswering.ts:20
▸ featureExtraction(args
, options?
): Promise
\<FeatureExtractionOutput
>
This task reads some text and outputs raw float values, that are usually consumed as part of a semantic database/semantic search.
Name | Type |
---|---|
args | FeatureExtractionArgs |
options? | Options |
Promise
\<FeatureExtractionOutput
>
inference/src/tasks/nlp/featureExtraction.ts:24
▸ fillMask(args
, options?
): Promise
\<FillMaskOutput
>
Tries to fill in a hole with a missing word (token to be precise). That’s the base task for BERT models.
Name | Type |
---|---|
args | FillMaskArgs |
options? | Options |
Promise
\<FillMaskOutput
>
inference/src/tasks/nlp/fillMask.ts:11
▸ imageClassification(args
, options?
): Promise
\<ImageClassificationOutput
>
This task reads some image input and outputs the likelihood of classes. Recommended model: google/vit-base-patch16-224
Name | Type |
---|---|
args | ImageClassificationArgs |
options? | Options |
Promise
\<ImageClassificationOutput
>
inference/src/tasks/cv/imageClassification.ts:13
▸ imageSegmentation(args
, options?
): Promise
\<ImageSegmentationOutput
>
This task reads some image input and outputs the likelihood of classes & bounding boxes of detected objects. Recommended model: facebook/detr-resnet-50-panoptic
Name | Type |
---|---|
args | ImageSegmentationArgs |
options? | Options |
Promise
\<ImageSegmentationOutput
>
inference/src/tasks/cv/imageSegmentation.ts:13
▸ imageToImage(args
, options?
): Promise
\<Blob
>
This task reads some text input and outputs an image. Recommended model: lllyasviel/sd-controlnet-depth
Name | Type |
---|---|
args | ImageToImageArgs |
options? | Options |
Promise
\<Blob
>
inference/src/tasks/cv/imageToImage.ts:13
▸ imageToText(args
, options?
): Promise
\<ImageToTextOutput
>
This task reads some image input and outputs the text caption.
Name | Type |
---|---|
args | ImageToTextArgs |
options? | Options |
Promise
\<ImageToTextOutput
>
inference/src/tasks/cv/imageToText.ts:12
▸ objectDetection(args
, options?
): Promise
\<ObjectDetectionOutput
>
This task reads some image input and outputs the likelihood of classes & bounding boxes of detected objects. Recommended model: facebook/detr-resnet-50
Name | Type |
---|---|
args | ObjectDetectionArgs |
options? | Options |
Promise
\<ObjectDetectionOutput
>
inference/src/tasks/cv/objectDetection.ts:13
▸ questionAnswering(args
, options?
): Promise
\<QuestionAnsweringOutput
[number
]>
Want to have a nice know-it-all bot that can answer any question?. Recommended model: deepset/roberta-base-squad2
Name | Type |
---|---|
args | QuestionAnsweringArgs |
options? | Options |
Promise
\<QuestionAnsweringOutput
[number
]>
inference/src/tasks/nlp/questionAnswering.ts:11
▸ request\<T
>(args
, options?
): Promise
\<T
>
Primitive to make custom calls to the inference provider
Name |
---|
T |
Name | Type |
---|---|
args | RequestArgs |
options? | Options & { chatCompletion? : boolean ; task? : string ; taskHint? : InferenceTask } |
Promise
\<T
>
inference/src/tasks/custom/request.ts:7
▸ sentenceSimilarity(args
, options?
): Promise
\<SentenceSimilarityOutput
>
Calculate the semantic similarity between one text and a list of other sentences by comparing their embeddings.
Name | Type |
---|---|
args | SentenceSimilarityArgs |
options? | Options |
Promise
\<SentenceSimilarityOutput
>
inference/src/tasks/nlp/sentenceSimilarity.ts:13
▸ streamingRequest\<T
>(args
, options?
): AsyncGenerator
\<T
>
Primitive to make custom inference calls that expect server-sent events, and returns the response through a generator
Name |
---|
T |
Name | Type |
---|---|
args | RequestArgs |
options? | Options & { chatCompletion? : boolean ; task? : string ; taskHint? : InferenceTask } |
AsyncGenerator
\<T
>
inference/src/tasks/custom/streamingRequest.ts:9
▸ summarization(args
, options?
): Promise
\<SummarizationOutput
>
This task is well known to summarize longer text into shorter text. Be careful, some models have a maximum length of input. That means that the summary cannot handle full books for instance. Be careful when choosing your model.
Name | Type |
---|---|
args | SummarizationArgs |
options? | Options |
Promise
\<SummarizationOutput
>
inference/src/tasks/nlp/summarization.ts:11
▸ tableQuestionAnswering(args
, options?
): Promise
\<TableQuestionAnsweringOutput
[number
]>
Don’t know SQL? Don’t want to dive into a large spreadsheet? Ask questions in plain english! Recommended model: google/tapas-base-finetuned-wtq.
Name | Type |
---|---|
args | TableQuestionAnsweringArgs |
options? | Options |
Promise
\<TableQuestionAnsweringOutput
[number
]>
inference/src/tasks/nlp/tableQuestionAnswering.ts:11
▸ tabularClassification(args
, options?
): Promise
\<TabularClassificationOutput
>
Predicts target label for a given set of features in tabular form. Typically, you will want to train a classification model on your training data and use it with your new data of the same format. Example model: vvmnnnkv/wine-quality
Name | Type |
---|---|
args | TabularClassificationArgs |
options? | Options |
Promise
\<TabularClassificationOutput
>
inference/src/tasks/tabular/tabularClassification.ts:24
▸ tabularRegression(args
, options?
): Promise
\<TabularRegressionOutput
>
Predicts target value for a given set of features in tabular form. Typically, you will want to train a regression model on your training data and use it with your new data of the same format. Example model: scikit-learn/Fish-Weight
Name | Type |
---|---|
args | TabularRegressionArgs |
options? | Options |
Promise
\<TabularRegressionOutput
>
inference/src/tasks/tabular/tabularRegression.ts:24
▸ textClassification(args
, options?
): Promise
\<TextClassificationOutput
>
Usually used for sentiment-analysis this will output the likelihood of classes of an input. Recommended model: distilbert-base-uncased-finetuned-sst-2-english
Name | Type |
---|---|
args | TextClassificationArgs |
options? | Options |
Promise
\<TextClassificationOutput
>
inference/src/tasks/nlp/textClassification.ts:11
▸ textGeneration(args
, options?
): Promise
\<TextGenerationOutput
>
Use to continue text from a prompt. This is a very generic task. Recommended model: gpt2 (it’s a simple model, but fun to play with).
Name | Type |
---|---|
args | BaseArgs & TextGenerationInput |
options? | Options |
Promise
\<TextGenerationOutput
>
inference/src/tasks/nlp/textGeneration.ts:27
▸ textGenerationStream(args
, options?
): AsyncGenerator
\<TextGenerationStreamOutput
>
Use to continue text from a prompt. Same as textGeneration
but returns generator that can be read one token at a time
Name | Type |
---|---|
args | BaseArgs & TextGenerationInput |
options? | Options |
AsyncGenerator
\<TextGenerationStreamOutput
>
inference/src/tasks/nlp/textGenerationStream.ts:88
▸ textToImage(args
, options?
): Promise
\<Blob
>
This task reads some text input and outputs an image. Recommended model: stabilityai/stable-diffusion-2
Name | Type |
---|---|
args | TextToImageArgs |
options? | Options |
Promise
\<Blob
>
inference/src/tasks/cv/textToImage.ts:22
▸ textToSpeech(args
, options?
): Promise
\<Blob
>
This task synthesize an audio of a voice pronouncing a given text. Recommended model: espnet/kan-bayashi_ljspeech_vits
Name | Type |
---|---|
args | TextToSpeechArgs |
options? | Options |
Promise
\<Blob
>
inference/src/tasks/audio/textToSpeech.ts:15
▸ textToVideo(args
, options?
): Promise
\<TextToVideoOutput
>
Name | Type |
---|---|
args | TextToVideoArgs |
options? | Options |
Promise
\<TextToVideoOutput
>
inference/src/tasks/cv/textToVideo.ts:25
▸ tokenClassification(args
, options?
): Promise
\<TokenClassificationOutput
>
Usually used for sentence parsing, either grammatical, or Named Entity Recognition (NER) to understand keywords contained within text. Recommended model: dbmdz/bert-large-cased-finetuned-conll03-english
Name | Type |
---|---|
args | TokenClassificationArgs |
options? | Options |
Promise
\<TokenClassificationOutput
>
inference/src/tasks/nlp/tokenClassification.ts:12
▸ translation(args
, options?
): Promise
\<TranslationOutput
>
This task is well known to translate text from one language to another. Recommended model: Helsinki-NLP/opus-mt-ru-en.
Name | Type |
---|---|
args | TranslationArgs |
options? | Options |
Promise
\<TranslationOutput
>
inference/src/tasks/nlp/translation.ts:10
▸ visualQuestionAnswering(args
, options?
): Promise
\<VisualQuestionAnsweringOutput
[number
]>
Answers a question on an image. Recommended model: dandelin/vilt-b32-finetuned-vqa.
Name | Type |
---|---|
args | VisualQuestionAnsweringArgs |
options? | Options |
Promise
\<VisualQuestionAnsweringOutput
[number
]>
inference/src/tasks/multimodal/visualQuestionAnswering.ts:18
▸ zeroShotClassification(args
, options?
): Promise
\<ZeroShotClassificationOutput
>
This task is super useful to try out classification with zero code, you simply pass a sentence/paragraph and the possible labels for that sentence, and you get a result. Recommended model: facebook/bart-large-mnli.
Name | Type |
---|---|
args | ZeroShotClassificationArgs |
options? | Options |
Promise
\<ZeroShotClassificationOutput
>
inference/src/tasks/nlp/zeroShotClassification.ts:12
▸ zeroShotImageClassification(args
, options?
): Promise
\<ZeroShotImageClassificationOutput
>
Classify an image to specified classes. Recommended model: openai/clip-vit-large-patch14-336
Name | Type |
---|---|
args | ZeroShotImageClassificationArgs |
options? | Options |
Promise
\<ZeroShotImageClassificationOutput
>
inference/src/tasks/cv/zeroShotImageClassification.ts:44
< > Update on GitHub