helenqu commited on
Commit
8f782b4
·
1 Parent(s): 6b00fe9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md CHANGED
@@ -1,3 +1,61 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - time series
5
+ - astrophysics
6
+ - pretraining
7
+ - connect-later
8
+ size_categories:
9
+ - 100K<n<1M
10
  ---
11
+ # AstroClassification and Redshifts Datasets
12
+
13
+ <!-- Provide a quick summary of the dataset. -->
14
+
15
+ This dataset was used for the AstroClassification and Redshifts introduced in [Connect Later: Improving Fine-tuning for Robustness with Targeted Augmentations](). This is a dataset of simulated astronomical time-series (e.g., supernovae, active galactic nuclei), and the task is to classify the object type (AstroClassification) or predict the object's redshift (Redshifts).
16
+
17
+ - **Repository:** https://github.com/helenqu/connect-later
18
+ - **Paper:** will be updated
19
+ - **Point of Contact: Helen Qu (<[email protected]>)**
20
+
21
+ ## Dataset Structure
22
+
23
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
24
+ - **object_id**: unique object identifier
25
+ - **times_wv**: 2D array of shape (N, 2) containing the observation times (modified Julian days, MJD) and filter (wavelength in nm) for each observation, N=number of observations
26
+ - **lightcurve**: 2D array of shape (N, 2) containing the flux (arbitrary units) and flux error for each observation
27
+ - **label**: integer representing the class of the object (see below for details)
28
+ - **redshift**: redshift of the object
29
+
30
+ ## Dataset Creation
31
+
32
+ ### Source Data
33
+
34
+ This is a modified version of the dataset from the 2018 Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC) Kaggle competition
35
+ The original Kaggle competition can be found [here](https://www.kaggle.com/c/PLAsTiCC-2018). [This note](https://arxiv.org/abs/1810.00001) from the competition describes the dataset in detail. Astronomers may be interested in [this paper](https://arxiv.org/abs/1903.11756) describing the simulations used to generate the data.
36
+
37
+ - **Train**: 80% of the original PLAsTiCC training set augmented using the redshifting targeted augmentation described in the Connect Later paper
38
+ - **Validation**: Remaining 20% of the original PLAsTiCC training set, *not* augmented or modified
39
+ - **Test**: Subset of 10,000 objects randomly selected from the PLAsTiCC test set
40
+
41
+ ### Object Types
42
+ ```
43
+ 0: microlens-single
44
+ 1: tidal disruption event (TDE)
45
+ 2: eclipsing binary (EB)
46
+ 3: type II supernova (SNII)
47
+ 4: peculiar type Ia supernova (SNIax)
48
+ 5: Mira variable
49
+ 6: type Ibc supernova(SNIbc)
50
+ 7: kilonova (KN)
51
+ 8: M-dwarf
52
+ 9: peculiar type Ia supernova (SNIa-91bg)
53
+ 10: active galactic nuclei (AGN)
54
+ 11: type Ia supernova (SNIa)
55
+ 12: RR-Lyrae (RRL)
56
+ 13: superluminous supernova (SLSN-I)
57
+ 14: 5 "anomalous" types that are not present in training set: microlens-binary, intermediate luminosity optical transient (ILOT), calcium-rich transient (CaRT), pair instability supernova (PISN), microlens-string
58
+ ```
59
+
60
+ ## Citation
61
+ will be updated