File size: 1,667 Bytes
81a172e
 
 
 
 
 
 
 
 
da2b8d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02071f5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
task_categories:
- image-classification
- unconditional-image-generation
pretty_name: Easy MNIST
size_categories:
- 10K<n<100K
---
# Easy MNIST
MNIST processed into three easy to use formats. Each .zip file contains a labels_and_paths.csv file and a data directory.

## mnist_png.zip
MNIST in the png format.
```
       label            path
0          5      data/0.png
1          0      data/1.png
2          4      data/2.png
3          1      data/3.png
4          9      data/4.png
...      ...             ...
69995      2  data/69995.png
69996      3  data/69996.png
69997      4  data/69997.png
69998      5  data/69998.png
69999      6  data/69999.png
```

## mnist_numpy.zip
MNIST in the npy format.
```
       label            path
0          5      data/0.npy
1          0      data/1.npy
2          4      data/2.npy
3          1      data/3.npy
4          9      data/4.npy
...      ...             ...
69995      2  data/69995.npy
69996      3  data/69996.npy
69997      4  data/69997.npy
69998      5  data/69998.npy
69999      6  data/69999.npy
```

## mnist_numpy_flat.zip
MNIST in the npy format, flattened to 784 dimensional vectors.
```
       label            path
0          5      data/0.npy
1          0      data/1.npy
2          4      data/2.npy
3          1      data/3.npy
4          9      data/4.npy
...      ...             ...
69995      2  data/69995.npy
69996      3  data/69996.npy
69997      4  data/69997.npy
69998      5  data/69998.npy
69999      6  data/69999.npy
```

## Acknowledgements
- Yann LeCun, Courant Institute, NYU
- Corinna Cortes, Google Labs, New York
- Christopher J.C. Burges, Microsoft Research, Redmond