Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
10M<n<100M
ArXiv:
License:
File size: 14,529 Bytes
ff61db4 83b2798 ff61db4 83b2798 ff61db4 83b2798 ff61db4 83b2798 ff61db4 83b2798 ff61db4 83b2798 ff61db4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Quickdraw dataset"""
import io
import json
import os
import struct
import textwrap
from datetime import datetime
import numpy as np
import datasets
_CITATION = """\
@article{DBLP:journals/corr/HaE17,
author = {David Ha and
Douglas Eck},
title = {A Neural Representation of Sketch Drawings},
journal = {CoRR},
volume = {abs/1704.03477},
year = {2017},
url = {http://arxiv.org/abs/1704.03477},
archivePrefix = {arXiv},
eprint = {1704.03477},
timestamp = {Mon, 13 Aug 2018 16:48:30 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/HaE17},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
The Quick Draw Dataset is a collection of 50 million drawings across 345 categories, contributed by players of the game Quick, Draw!.
The drawings were captured as timestamped vectors, tagged with metadata including what the player was asked to draw and in which country the player was located.
"""
_HOMEPAGE = "https://quickdraw.withgoogle.com/data"
_LICENSE = "CC BY 4.0"
_NAMES = """\
aircraft carrier,airplane,alarm clock,ambulance,angel
animal migration,ant,anvil,apple,arm
asparagus,axe,backpack,banana,bandage
barn,baseball bat,baseball,basket,basketball
bat,bathtub,beach,bear,beard
bed,bee,belt,bench,bicycle
binoculars,bird,birthday cake,blackberry,blueberry
book,boomerang,bottlecap,bowtie,bracelet
brain,bread,bridge,broccoli,broom
bucket,bulldozer,bus,bush,butterfly
cactus,cake,calculator,calendar,camel
camera,camouflage,campfire,candle,cannon
canoe,car,carrot,castle,cat
ceiling fan,cell phone,cello,chair,chandelier
church,circle,clarinet,clock,cloud
coffee cup,compass,computer,cookie,cooler
couch,cow,crab,crayon,crocodile
crown,cruise ship,cup,diamond,dishwasher
diving board,dog,dolphin,donut,door
dragon,dresser,drill,drums,duck
dumbbell,ear,elbow,elephant,envelope
eraser,eye,eyeglasses,face,fan
feather,fence,finger,fire hydrant,fireplace
firetruck,fish,flamingo,flashlight,flip flops
floor lamp,flower,flying saucer,foot,fork
frog,frying pan,garden hose,garden,giraffe
goatee,golf club,grapes,grass,guitar
hamburger,hammer,hand,harp,hat
headphones,hedgehog,helicopter,helmet,hexagon
hockey puck,hockey stick,horse,hospital,hot air balloon
hot dog,hot tub,hourglass,house plant,house
hurricane,ice cream,jacket,jail,kangaroo
key,keyboard,knee,knife,ladder
lantern,laptop,leaf,leg,light bulb
lighter,lighthouse,lightning,line,lion
lipstick,lobster,lollipop,mailbox,map
marker,matches,megaphone,mermaid,microphone
microwave,monkey,moon,mosquito,motorbike
mountain,mouse,moustache,mouth,mug
mushroom,nail,necklace,nose,ocean
octagon,octopus,onion,oven,owl
paint can,paintbrush,palm tree,panda,pants
paper clip,parachute,parrot,passport,peanut
pear,peas,pencil,penguin,piano
pickup truck,picture frame,pig,pillow,pineapple
pizza,pliers,police car,pond,pool
popsicle,postcard,potato,power outlet,purse
rabbit,raccoon,radio,rain,rainbow
rake,remote control,rhinoceros,rifle,river
roller coaster,rollerskates,sailboat,sandwich,saw
saxophone,school bus,scissors,scorpion,screwdriver
sea turtle,see saw,shark,sheep,shoe
shorts,shovel,sink,skateboard,skull
skyscraper,sleeping bag,smiley face,snail,snake
snorkel,snowflake,snowman,soccer ball,sock
speedboat,spider,spoon,spreadsheet,square
squiggle,squirrel,stairs,star,steak
stereo,stethoscope,stitches,stop sign,stove
strawberry,streetlight,string bean,submarine,suitcase
sun,swan,sweater,swing set,sword
syringe,t-shirt,table,teapot,teddy-bear
telephone,television,tennis racquet,tent,The Eiffel Tower
The Great Wall of China,The Mona Lisa,tiger,toaster,toe
toilet,tooth,toothbrush,toothpaste,tornado
tractor,traffic light,train,tree,triangle
trombone,truck,trumpet,umbrella,underwear
van,vase,violin,washing machine,watermelon
waterslide,whale,wheel,windmill,wine bottle
wine glass,wristwatch,yoga,zebra,zigzag
"""
_NAMES = [name for line in _NAMES.strip().splitlines() for name in line.strip().split(",")]
_CONFIG_NAME_TO_BASE_URL = {
"raw": "https://storage.googleapis.com/quickdraw_dataset/full/raw/{}.ndjson",
"preprocessed_simplified_drawings": "https://storage.googleapis.com/quickdraw_dataset/full/binary/{}.bin",
"preprocessed_bitmaps": "https://storage.googleapis.com/quickdraw_dataset/full/numpy_bitmap/{}.npy",
"sketch_rnn": "https://storage.googleapis.com/quickdraw_dataset/sketchrnn/{}.npz",
"sketch_rnn_full": "https://storage.googleapis.com/quickdraw_dataset/sketchrnn/{}.full.npz",
}
class Quickdraw(datasets.GeneratorBasedBuilder):
"""Quickdraw dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="raw", version=VERSION, description="The raw moderated dataset"),
datasets.BuilderConfig(
name="preprocessed_simplified_drawings",
version=VERSION,
description=textwrap.dedent(
"""\
The simplified version of the dataset with the simplified vectors, removed timing information, and the data positioned and scaled into a 256x256 region.
The simplification process was:
1.Align the drawing to the top-left corner, to have minimum values of 0.
2.Uniformly scale the drawing, to have a maximum value of 255.
3.Resample all strokes with a 1 pixel spacing.
4.Simplify all strokes using the Ramer-Douglas-Peucker algorithm with an epsilon value of 2.0.
"""
),
),
datasets.BuilderConfig(
name="preprocessed_bitmaps",
version=VERSION,
description="The preprocessed dataset where all the simplified drawings have been rendered into a 28x28 grayscale bitmap.",
),
datasets.BuilderConfig(
name="sketch_rnn",
version=VERSION,
description=textwrap.dedent(
"""\
This dataset was used for training the Sketch-RNN model from the paper https://arxiv.org/abs/1704.03477.
In this dataset, 75K samples (70K Training, 2.5K Validation, 2.5K Test) has been randomly selected from each category,
processed with RDP line simplification with an epsilon parameter of 2.0
"""
),
),
datasets.BuilderConfig(
name="sketch_rnn_full",
version=VERSION,
description="Compared to the `sketch_rnn` config, this version provides the full data for each category for training more complex models.",
),
]
DEFAULT_CONFIG_NAME = "preprocessed_bitmaps"
def _info(self):
if self.config.name == "raw":
features = datasets.Features(
{
"key_id": datasets.Value("string"),
"word": datasets.ClassLabel(names=_NAMES),
"recognized": datasets.Value("bool"),
"timestamp": datasets.Value("timestamp[us, tz=UTC]"),
"countrycode": datasets.Value("string"),
"drawing": datasets.Sequence(
{
"x": datasets.Sequence(datasets.Value("float32")),
"y": datasets.Sequence(datasets.Value("float32")),
"t": datasets.Sequence(datasets.Value("int32")),
}
),
}
)
elif self.config.name == "preprocessed_simplified_drawings":
features = datasets.Features(
{
"key_id": datasets.Value("string"),
"word": datasets.ClassLabel(names=_NAMES),
"recognized": datasets.Value("bool"),
"timestamp": datasets.Value("timestamp[us, tz=UTC]"),
"countrycode": datasets.Value("string"),
"drawing": datasets.Sequence(
{
"x": datasets.Sequence(datasets.Value("uint8")),
"y": datasets.Sequence(datasets.Value("uint8")),
}
),
}
)
elif self.config.name == "preprocessed_bitmaps":
features = datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(names=_NAMES),
}
)
else: # sketch_rnn, sketch_rnn_full
features = datasets.Features(
{
"word": datasets.ClassLabel(names=_NAMES),
"drawing": datasets.Array2D(shape=(None, 3), dtype="int16"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
base_url = _CONFIG_NAME_TO_BASE_URL[self.config.name]
if not self.config.name.startswith("sketch_rnn"):
files = dl_manager.download(
{name: url for name, url in zip(_NAMES, [base_url.format(name) for name in _NAMES])}
)
files = [(name, file) for name, file in files.items()]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": files,
"split": "train",
},
),
]
else:
files = dl_manager.download_and_extract(
{name: url for name, url in zip(_NAMES, [base_url.format(name) for name in _NAMES])}
)
files = [(name, file) for name, file in files.items()]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": files,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"files": files,
"split": "valid",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"files": files,
"split": "test",
},
),
]
def _generate_examples(self, files, split):
if self.config.name == "raw":
idx = 0
for _, file in files:
with open(file, encoding="utf-8") as f:
for line in f:
example = json.loads(line)
example["timestamp"] = datetime.strptime(example["timestamp"], "%Y-%m-%d %H:%M:%S.%f %Z")
example["drawing"] = [{"x": x, "y": y, "t": t} for x, y, t in example["drawing"]]
yield idx, example
idx += 1
elif self.config.name == "preprocessed_simplified_drawings":
idx = 0
for label, file in files:
with open(file, "rb") as f:
while True:
try:
example = process_struct(f)
example["word"] = label
yield idx, example
except struct.error:
break
idx += 1
elif self.config.name == "preprocessed_bitmaps":
idx = 0
for label, file in files:
with open(file, "rb") as f:
images = np.load(f)
for image in images:
yield idx, {
"image": image.reshape(28, 28),
"label": label,
}
idx += 1
else: # sketch_rnn, sketch_rnn_full
idx = 0
for label, file in files:
with open(os.path.join(file, f"{split}.npy"), "rb") as f:
# read entire file since f.seek is not supported in the streaming mode
drawings = np.load(io.BytesIO(f.read()), encoding="latin1", allow_pickle=True)
for drawing in drawings:
yield idx, {
"word": label,
"drawing": drawing,
}
idx += 1
def process_struct(fileobj):
"""
Process a struct from a binary file object.
The code for this function is borrowed from the following link:
https://github.com/googlecreativelab/quickdraw-dataset/blob/f0f3beef0fc86393b3771cdf1fc94828b76bc89b/examples/binary_file_parser.py#L19
"""
(key_id,) = struct.unpack("Q", fileobj.read(8))
(country_code,) = struct.unpack("2s", fileobj.read(2))
(recognized,) = struct.unpack("b", fileobj.read(1))
(timestamp,) = struct.unpack("I", fileobj.read(4))
(n_strokes,) = struct.unpack("H", fileobj.read(2))
drawing = []
for _ in range(n_strokes):
(n_points,) = struct.unpack("H", fileobj.read(2))
fmt = str(n_points) + "B"
x = struct.unpack(fmt, fileobj.read(n_points))
y = struct.unpack(fmt, fileobj.read(n_points))
drawing.append({"x": list(x), "y": list(y)})
return {
"key_id": str(key_id),
"recognized": recognized,
"timestamp": datetime.fromtimestamp(timestamp),
"countrycode": country_code.decode("utf-8"),
"drawing": drawing,
}
|