Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
code
Size:
10K - 100K
License:
Delete loading script
Browse files
code_x_glue_cc_clone_detection_poj104.py
DELETED
@@ -1,93 +0,0 @@
|
|
1 |
-
from typing import List
|
2 |
-
|
3 |
-
import datasets
|
4 |
-
|
5 |
-
from .common import TrainValidTestChild
|
6 |
-
from .generated_definitions import DEFINITIONS
|
7 |
-
|
8 |
-
|
9 |
-
_DESCRIPTION = """Given a code and a collection of candidates as the input, the task is to return Top K codes with the same semantic. Models are evaluated by MAP score.
|
10 |
-
We use POJ-104 dataset on this task."""
|
11 |
-
|
12 |
-
_CITATION = """@inproceedings{mou2016convolutional,
|
13 |
-
title={Convolutional neural networks over tree structures for programming language processing},
|
14 |
-
author={Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi},
|
15 |
-
booktitle={Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence},
|
16 |
-
pages={1287--1293},
|
17 |
-
year={2016}
|
18 |
-
}"""
|
19 |
-
|
20 |
-
|
21 |
-
class CodeXGlueCcCloneDetectionPoj104Impl(TrainValidTestChild):
|
22 |
-
_DESCRIPTION = _DESCRIPTION
|
23 |
-
_CITATION = _CITATION
|
24 |
-
|
25 |
-
_FEATURES = {
|
26 |
-
"id": datasets.Value("int32"), # Index of the sample
|
27 |
-
"code": datasets.Value("string"), # The full text of the function
|
28 |
-
"label": datasets.Value("string"), # The id of problem that the source code solves
|
29 |
-
}
|
30 |
-
|
31 |
-
_SUPERVISED_KEYS = ["label"]
|
32 |
-
|
33 |
-
SPLIT_RANGES = {"train": (1, 65), "valid": (65, 81), "test": (81, 195)}
|
34 |
-
|
35 |
-
def _generate_examples(self, files, split_name):
|
36 |
-
cont = 0
|
37 |
-
for path, f in files:
|
38 |
-
# path are in the format ProgramData/{index}/{filename}
|
39 |
-
label = int(path.split("/")[1])
|
40 |
-
if self.SPLIT_RANGES[split_name][0] <= label <= self.SPLIT_RANGES[split_name][1]:
|
41 |
-
js = {}
|
42 |
-
js["label"] = str(label)
|
43 |
-
js["id"] = cont
|
44 |
-
js["code"] = f.read().decode("latin-1")
|
45 |
-
yield cont, js
|
46 |
-
cont += 1
|
47 |
-
|
48 |
-
|
49 |
-
CLASS_MAPPING = {
|
50 |
-
"CodeXGlueCcCloneDetectionPoj104": CodeXGlueCcCloneDetectionPoj104Impl,
|
51 |
-
}
|
52 |
-
|
53 |
-
|
54 |
-
class CodeXGlueCcCloneDetectionPoj104(datasets.GeneratorBasedBuilder):
|
55 |
-
BUILDER_CONFIG_CLASS = datasets.BuilderConfig
|
56 |
-
BUILDER_CONFIGS = [
|
57 |
-
datasets.BuilderConfig(name=name, description=info["description"]) for name, info in DEFINITIONS.items()
|
58 |
-
]
|
59 |
-
|
60 |
-
def _info(self):
|
61 |
-
name = self.config.name
|
62 |
-
info = DEFINITIONS[name]
|
63 |
-
if info["class_name"] in CLASS_MAPPING:
|
64 |
-
self.child = CLASS_MAPPING[info["class_name"]](info)
|
65 |
-
else:
|
66 |
-
raise RuntimeError(f"Unknown python class for dataset configuration {name}")
|
67 |
-
ret = self.child._info()
|
68 |
-
return ret
|
69 |
-
|
70 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
71 |
-
name = self.config.name
|
72 |
-
info = DEFINITIONS[name]
|
73 |
-
archive = dl_manager.download(info["raw_url"] + "/programs.tar.gz")
|
74 |
-
return [
|
75 |
-
datasets.SplitGenerator(
|
76 |
-
name=datasets.Split.TRAIN,
|
77 |
-
# These kwargs will be passed to _generate_examples
|
78 |
-
gen_kwargs={"files": dl_manager.iter_archive(archive), "split_name": "train"},
|
79 |
-
),
|
80 |
-
datasets.SplitGenerator(
|
81 |
-
name=datasets.Split.VALIDATION,
|
82 |
-
# These kwargs will be passed to _generate_examples
|
83 |
-
gen_kwargs={"files": dl_manager.iter_archive(archive), "split_name": "valid"},
|
84 |
-
),
|
85 |
-
datasets.SplitGenerator(
|
86 |
-
name=datasets.Split.TEST,
|
87 |
-
# These kwargs will be passed to _generate_examples
|
88 |
-
gen_kwargs={"files": dl_manager.iter_archive(archive), "split_name": "test"},
|
89 |
-
),
|
90 |
-
]
|
91 |
-
|
92 |
-
def _generate_examples(self, files, split_name):
|
93 |
-
return self.child._generate_examples(files, split_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|