Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 9,136 Bytes
800f511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
"""TODO(discofuse): Add a description here."""

from __future__ import absolute_import, division, print_function

import csv
import os

import datasets


# TODO(discofuse): BibTeX citation

_URL_ = "https://storage.googleapis.com/discofuse_dataset_v1/"
_CITATION = """\
@InProceedings{GevaEtAl2019,
  title = {DiscoFuse: A Large-Scale Dataset for Discourse-Based Sentence Fusion},
  author = {Geva, Mor and Malmi, Eric and Szpektor, Idan and Berant, Jonathan},
  booktitle = {Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics},
  note = {arXiv preprint arXiv:1902.10526},
  year = {2019}
}

"""

# TODO(discofuse):
_DESCRIPTION = """\
 DISCOFUSE is a large scale dataset for discourse-based sentence fusion.
"""


class DiscofuseConfig(datasets.BuilderConfig):

    """ BuilderConfig for Discofuse"""

    def __init__(self, data_url, balanced=False, **kwargs):
        """

        Args:
            balanced: to specify if we want to load the balanced file or the full file
            **kwargs: keyword arguments forwarded to super.
        """
        super(DiscofuseConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
        self.balanced = balanced
        self.data_url = data_url


class Discofuse(datasets.GeneratorBasedBuilder):
    """TODO(discofuse): Short description of my dataset."""

    # TODO(discofuse): Set up version.
    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        DiscofuseConfig(
            name="discofuse-sport", description="sentence fusion", data_url=_URL_ + "discofuse_v1_sports.tar.gz"
        ),
        DiscofuseConfig(
            name="discofuse-wikipedia", description="sentence fusion", data_url=_URL_ + "discofuse_v1_wikipedia.tar.gz"
        ),
    ]

    def _info(self):
        # TODO(discofuse): Specifies the datasets.DatasetInfo object
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    "connective_string": datasets.Value("string"),
                    "discourse_type": datasets.Value("string"),
                    "coherent_second_sentence": datasets.Value("string"),
                    "has_coref_type_pronoun": datasets.Value("float32"),
                    "incoherent_first_sentence": datasets.Value("string"),
                    "incoherent_second_sentence": datasets.Value("string"),
                    "has_coref_type_nominal": datasets.Value("float32"),
                    "coherent_first_sentence": datasets.Value("string"),
                    # These are the features of your dataset like images, labels ...
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://github.com/google-research-datasets/discofuse",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO(discofuse): Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLs
        if self.config.name == "discofuse-sport":
            dl_dir = dl_manager.download_and_extract(self.config.data_url)
            data_dir = os.path.join(dl_dir, "discofuse_v1/sports")
            if self.config.balanced:
                return [
                    datasets.SplitGenerator(
                        name=datasets.Split.TRAIN,
                        # These kwargs will be passed to _generate_examples
                        gen_kwargs={"filepath": os.path.join(data_dir, "train_balanced.tsv")},
                    ),
                    datasets.SplitGenerator(
                        name=datasets.Split.TEST,
                        # These kwargs will be passed to _generate_examples
                        gen_kwargs={"filepath": os.path.join(data_dir, "test_balanced.tsv")},
                    ),
                    datasets.SplitGenerator(
                        name=datasets.Split.VALIDATION,
                        # These kwargs will be passed to _generate_examples
                        gen_kwargs={"filepath": os.path.join(data_dir, "dev_balanced.tsv")},
                    ),
                ]
            else:
                return [
                    datasets.SplitGenerator(
                        name=datasets.Split.TRAIN,
                        # These kwargs will be passed to _generate_examples
                        gen_kwargs={"filepath": os.path.join(data_dir, "train.tsv")},
                    ),
                    datasets.SplitGenerator(
                        name=datasets.Split.TEST,
                        # These kwargs will be passed to _generate_examples
                        gen_kwargs={"filepath": os.path.join(data_dir, "test.tsv")},
                    ),
                    datasets.SplitGenerator(
                        name=datasets.Split.VALIDATION,
                        # These kwargs will be passed to _generate_examples
                        gen_kwargs={"filepath": os.path.join(data_dir, "dev.tsv")},
                    ),
                ]
        else:
            if self.config.name == "discofuse-wikipedia":
                dl_dir = dl_manager.download_and_extract(self.config.data_url)
                data_dir = os.path.join(dl_dir, "discofuse_v1/wikipedia")
                if self.config.balanced:
                    return [
                        datasets.SplitGenerator(
                            name=datasets.Split.TRAIN,
                            # These kwargs will be passed to _generate_examples
                            gen_kwargs={"filepath": os.path.join(data_dir, "train_balanced.tsv")},
                        ),
                        datasets.SplitGenerator(
                            name=datasets.Split.TEST,
                            # These kwargs will be passed to _generate_examples
                            gen_kwargs={"filepath": os.path.join(data_dir, "test_balanced.tsv")},
                        ),
                        datasets.SplitGenerator(
                            name=datasets.Split.VALIDATION,
                            # These kwargs will be passed to _generate_examples
                            gen_kwargs={"filepath": os.path.join(data_dir, "dev_balanced.tsv")},
                        ),
                    ]
                else:
                    return [
                        datasets.SplitGenerator(
                            name=datasets.Split.TRAIN,
                            # These kwargs will be passed to _generate_examples
                            gen_kwargs={"filepath": os.path.join(data_dir, "train.tsv")},
                        ),
                        datasets.SplitGenerator(
                            name=datasets.Split.TEST,
                            # These kwargs will be passed to _generate_examples
                            gen_kwargs={"filepath": os.path.join(data_dir, "test.tsv")},
                        ),
                        datasets.SplitGenerator(
                            name=datasets.Split.VALIDATION,
                            # These kwargs will be passed to _generate_examples
                            gen_kwargs={"filepath": os.path.join(data_dir, "dev.tsv")},
                        ),
                    ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        # TODO(discofuse): Yields (key, example) tuples from the dataset
        with open(filepath, encoding="utf-8") as f:
            data = csv.DictReader(f, delimiter="\t")
            for id_, row in enumerate(data):
                co_first_sent = row["coherent_first_sentence"]
                co_second_sent = row["coherent_second_sentence"]
                connect_str = row["connective_string"]
                discourse_type = row["discourse_type"]
                has_coref_pronoun = row["has_coref_type_pronoun"]
                has_coref_nominal = row["has_coref_type_nominal"]
                inco_first_sent = row["incoherent_first_sentence"]
                inco_second_sent = row["incoherent_second_sentence"]
                yield id_, {
                    "connective_string": connect_str,
                    "discourse_type": discourse_type,
                    "coherent_second_sentence": co_second_sent,
                    "has_coref_type_pronoun": has_coref_pronoun,
                    "incoherent_first_sentence": inco_first_sent,
                    "incoherent_second_sentence": inco_second_sent,
                    "has_coref_type_nominal": has_coref_nominal,
                    "coherent_first_sentence": co_first_sent,
                }