# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import pandas as pd import re import datasets from pathlib import Path def get_open_method(path): path = Path(path) ext = path.suffix if ext == ".gz": import gzip open_func = gzip.open elif ext == ".bz2": import bz2 open_func = bz2.open else: open_func = open return open_func def read_file(path): open_func = get_open_method(path) with open_func(path, "rt", encoding="UTF-8") as f: return f.read() # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = "" # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ French Wikipedia dataset for Entity Linking """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # TODO: Add link to the official dataset URLs here # The HuggingFace dataset library don't host the datasets but only point to the original files # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLs = { "frwiki": "", } _CLASS_LABELS = [ "B", "I", "O", ] def text_to_el_features(doc_qid, doc_title, text, title2qid, title2wikipedia, title2wikidata): res = { "title": doc_title.replace("_", " "), "qid": doc_qid, } text_dict = { "words": [], "labels": [], "qids": [], "titles": [], "wikipedia": [], "wikidata": [], } entity_pattern = r"\[E=(.+?)\](.+?)\[/E\]" # start index of the previous text i = 0 for m in re.finditer(entity_pattern, text): mention_title = m.group(1) mention = m.group(2) mention_qid = title2qid.get(mention_title, "") mention_wikipedia = title2wikipedia.get(mention_title, "") mention_wikidata = title2wikidata.get(mention_title, "") # Removes entity tags in descriptions mention_wikipedia = re.sub(entity_pattern, r"\2", mention_wikipedia) # Should not be necessary mention_wikidata = re.sub(entity_pattern, r"\2", mention_wikidata) # mention_qid = title2qid.get(mention_title, "YARIEN") # mention_wikipedia = title2wikipedia.get(mention_title, "YARIEN") # mention_wikidata = title2wikidata.get(mention_title, "YARIEN") mention_words = mention.split() j = m.start(0) prev_text = text[i:j].split() len_prev_text = len(prev_text) text_dict["words"].extend(prev_text) text_dict["labels"].extend(["O"] * len_prev_text) text_dict["qids"].extend([None] * len_prev_text) text_dict["titles"].extend([None] * len_prev_text) text_dict["wikipedia"].extend([None] * len_prev_text) text_dict["wikidata"].extend([None] * len_prev_text) text_dict["words"].extend(mention_words) # If there is no description, learning can’t be done so we treat the mention as not en entity if mention_wikipedia == "": len_mention = len(mention_words) text_dict["labels"].extend(["O"] * len_mention) text_dict["qids"].extend([None] * len_mention) text_dict["titles"].extend([None] * len_mention) text_dict["wikipedia"].extend([None] * len_mention) text_dict["wikidata"].extend([None] * len_mention) else: len_mention_tail = len(mention_words) - 1 wikipedia_words = mention_wikipedia.split() wikidata_words = mention_wikidata.split() title_words = mention_title.replace("_", " ").split() text_dict["labels"].extend(["B"] + ["I"] * len_mention_tail) text_dict["qids"].extend([mention_qid] + [None] * len_mention_tail) text_dict["titles"].extend( [mention_title] + [None] * len_mention_tail) text_dict["wikipedia"].extend( [mention_wikipedia] + [None] * len_mention_tail) text_dict["wikidata"].extend( [mention_wikidata] + [None] * len_mention_tail) i = m.end(0) tail = text[i:].split() len_tail = len(tail) text_dict["words"].extend(tail) text_dict["labels"].extend(["O"] * len_tail) text_dict["qids"].extend([None] * len_tail) text_dict["titles"].extend([None] * len_tail) text_dict["wikipedia"].extend([None] * len_tail) text_dict["wikidata"].extend([None] * len_tail) res["text"] = text_dict return res class FrWikiGoodPagesELDataset(datasets.GeneratorBasedBuilder): """ """ VERSION = datasets.Version("0.1.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') BUILDER_CONFIGS = [ datasets.BuilderConfig(name="frwiki", version=VERSION, description="The frwiki dataset for Entity Linking"), ] # It's not mandatory to have a default configuration. Just use one if it make sense. DEFAULT_CONFIG_NAME = "frwiki" def _info(self): if self.config.name == "frwiki": features = datasets.Features({ "title": datasets.Value("string"), "qid": datasets.Value("string"), "text": { "words": [datasets.Value("string")], "wikipedia": [datasets.Value("string")], "wikidata": [datasets.Value("string")], "labels": [datasets.ClassLabel(names=_CLASS_LABELS)], "titles": [datasets.Value("string")], "qids": [datasets.Value("string")], } }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types # Here we define them above because they are different between the two configurations features=features, # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive # my_urls = _URLs[self.config.name] # data_dir = dl_manager.download_and_extract(my_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "dataset_dir": Path(".", "data", "good-pages"), "split": "train" } ) ] def _generate_examples( # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` self, dataset_dir, split ): """ Yields examples as (key, example) tuples. """ # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is here for legacy reason (tfds) and is not important in itself. with open(Path(dataset_dir, "list-good-pages.txt"), "rt", encoding="UTF-8") as f: good_pages_list = f.read().split("\n") wiki_df = pd.read_csv(Path(dataset_dir, "scrapped", "final-dataset.csv"), dtype=str, na_filter=False) title2qid = dict(zip(wiki_df["title"], wiki_df["qid"])) title2path = dict(zip(wiki_df["title"], wiki_df["path"])) title2wikipedia = dict( zip(wiki_df["title"], wiki_df["wikipedia_description"])) title2wikidata = dict( zip(wiki_df["title"], wiki_df["wikidata_description"])) good_pages_list = [ gp.strip() for gp in good_pages_list if title2path[gp] != "" and gp.strip() != "" ] for id, title in enumerate(good_pages_list): qid = title2qid[title] path = title2path[title] text = read_file(path) features = text_to_el_features( qid, title, text, title2qid, title2wikipedia, title2wikidata) yield id, features