File size: 6,399 Bytes
579e126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a70d6
 
 
 
579e126
 
 
 
 
 
b7f5ca3
579e126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f0711e
 
2b34116
 
579e126
 
 
 
 
 
 
 
2b34116
579e126
 
 
8e8eb22
579e126
 
9362a18
46a70d6
 
9362a18
 
8e8eb22
9362a18
 
579e126
 
 
 
 
8e8eb22
579e126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9acb001
579e126
 
 
 
 
9acb001
579e126
 
 
 
 
 
 
 
 
a6fa8fb
 
 
 
46a70d6
b7f5ca3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""


import re
import gzip
import json
import datasets
from pathlib import Path


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = ""

_DESCRIPTION = """\
French Wikipedia dataset for Entity Linking
"""

_HOMEPAGE = "https://github.com/GaaH/frwiki_el"

_LICENSE = "WTFPL"

_URLs = {
    "frwiki": "data/frwiki-20220901/corpus.jsonl.gz",
    "frwiki-mini": "data/frwiki-20220901/corpus_mini.jsonl.gz",
    "frwiki-abstracts": "data/frwiki-20220901/corpus_abstracts.jsonl.gz",
    "entities": "data/frwiki-20220901/entities.jsonl.gz",
}

class FrwikiElDataset(datasets.GeneratorBasedBuilder):
    """
    """

    VERSION = datasets.Version("0.2.3")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="frwiki", version=VERSION,
                               description="The frwiki dataset for Entity Linking"),
        datasets.BuilderConfig(name="frwiki-mini", version=VERSION,
                               description="1000 first sentences of the frwiki dataset for Entity Linking"),
        datasets.BuilderConfig(name="frwiki-abstracts", version=VERSION,
                               description="Abstracts (first paragraph) of the frwiki pages."),
        datasets.BuilderConfig(name="entities", version=VERSION,
                               description="Entities and their descriptions"),
    ]

    # It's not mandatory to have a default configuration. Just use one if it make sense.
    DEFAULT_CONFIG_NAME = "frwiki"

    def _info(self):
        if self.config.name in ("frwiki", 'frwiki-mini', 'frwiki-abstracts'):
            features = datasets.Features({
                "name": datasets.Value("string"),
                "wikidata_id": datasets.Value("string"),
                "wikipedia_id": datasets.Value("int32"),
                "wikipedia_url": datasets.Value("string"),
                "wikidata_url": datasets.Value("string"),
                "sentences": [{
                    "text": datasets.Value("string"),
                    "ner": [datasets.Value("string")],
                    "mention_mappings": [[datasets.Value("int16")]],
                    "el_wikidata_id": [datasets.Value("string")],
                    "el_wikipedia_id": [datasets.Value("int32")],
                    "el_wikipedia_title": [datasets.Value("string")],
                }]
            })
        elif self.config.name == "entities":
            features = datasets.Features({
                "name": datasets.Value("string"),
                "wikidata_id": datasets.Value("string"),
                "wikipedia_id": datasets.Value("int32"),
                "wikipedia_url": datasets.Value("string"),
                "wikidata_url": datasets.Value("string"),
                "description": datasets.Value("string"),
            })

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            # Here we define them above because they are different between the two configurations
            features=features,
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        filepath = _URLs[self.config.name]
        path = dl_manager.download(filepath)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "path": path,
                }
            )
        ]

    def _generate_examples(self, path):
        """ Yields examples as (key, example) tuples. """
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is here for legacy reason (tfds) and is not important in itself.

        # We need to use open before gzip.open in case the dataset is streamed
        # https://github.com/huggingface/datasets/issues/2607#issuecomment-883219727
        with gzip.open(open(path, 'rb'), "rt", encoding="UTF-8") as datafile:
            for id, line in enumerate(datafile):
                item = json.loads(line)
                yield id, item