frgfm commited on
Commit
42bda6f
·
1 Parent(s): 52861f0

docs: Updated README and added dataset_infos

Browse files
Files changed (2) hide show
  1. README.md +151 -1
  2. dataset_infos.json +167 -0
README.md CHANGED
@@ -1,3 +1,153 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language: []
5
+ language_creators:
6
+ - crowdsourced
7
+ license:
8
+ - apache-2.0
9
+ multilinguality: []
10
+ pretty_name: Wildfire image classification dataset collected using images from web
11
+ searches.
12
+ size_categories:
13
+ - 1K<n<10K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - image-classification
18
+ task_ids:
19
+ - image-classification
20
  ---
21
+
22
+ # Dataset Card for OpenFire
23
+
24
+ ## Table of Contents
25
+ - [Table of Contents](#table-of-contents)
26
+ - [Dataset Description](#dataset-description)
27
+ - [Dataset Summary](#dataset-summary)
28
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
29
+ - [Languages](#languages)
30
+ - [Dataset Structure](#dataset-structure)
31
+ - [Data Instances](#data-instances)
32
+ - [Data Fields](#data-fields)
33
+ - [Data Splits](#data-splits)
34
+ - [Dataset Creation](#dataset-creation)
35
+ - [Curation Rationale](#curation-rationale)
36
+ - [Source Data](#source-data)
37
+ - [Annotations](#annotations)
38
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
39
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
40
+ - [Social Impact of Dataset](#social-impact-of-dataset)
41
+ - [Discussion of Biases](#discussion-of-biases)
42
+ - [Other Known Limitations](#other-known-limitations)
43
+ - [Additional Information](#additional-information)
44
+ - [Dataset Curators](#dataset-curators)
45
+ - [Licensing Information](#licensing-information)
46
+ - [Citation Information](#citation-information)
47
+ - [Contributions](#contributions)
48
+
49
+ ## Dataset Description
50
+
51
+ - **Homepage:** https://pyronear.org/pyro-vision/datasets.html#openfire
52
+ - **Repository:** https://github.com/pyronear/pyro-vision
53
+ - **Point of Contact:** Pyronear <https://pyronear.org/en/>
54
+
55
+ ### Dataset Summary
56
+
57
+ OpenFire is an image classification dataset for wildfire detection, collected
58
+ from web searches.
59
+
60
+ ### Supported Tasks and Leaderboards
61
+
62
+ - `image-classification`: The dataset can be used to train a model for Image Classification.
63
+
64
+ ### Languages
65
+
66
+ English
67
+
68
+ ## Dataset Structure
69
+
70
+ ### Data Instances
71
+
72
+ A data point comprises an image URL and its binary label.
73
+
74
+ ```
75
+ {
76
+ 'image_url': 'https://cdn-s-www.ledauphine.com/images/13C08274-6BA6-4577-B3A0-1E6C1B2A573C/FB1200/photo-1338240831.jpg',
77
+ 'is_wildfire': true,
78
+ }
79
+ ```
80
+
81
+ ### Data Fields
82
+
83
+ - `image_url`: the download URL of the image.
84
+ - `is_wildfire`: a boolean value specifying whether there is an ongoing wildfire on the image.
85
+
86
+ ### Data Splits
87
+
88
+ The data is split into training and validation sets. The training set contains 7143 images and the validation set 792 images.
89
+
90
+ ## Dataset Creation
91
+
92
+ ### Curation Rationale
93
+
94
+ The curators state that the current wildfire classification datasets typically contain close-up shots of wildfires, with limited variations of weather conditions, luminosity and backrgounds,
95
+ making it difficult to assess for real world performance. They argue that the limitations of datasets have partially contributed to the failure of some algorithms in coping
96
+ with sun flares, foggy / cloudy weather conditions and small scale.
97
+
98
+ ### Source Data
99
+
100
+ #### Initial Data Collection and Normalization
101
+
102
+ OpenFire was collected using images publicly indexed by the search engine DuckDuckGo using multiple relevant queries. The images were then manually cleaned to remove errors.
103
+
104
+ ### Annotations
105
+
106
+ #### Annotation process
107
+
108
+ Each web search query was designed to yield a single label (with wildfire or without), and additional human verification was used to remove errors.
109
+
110
+ #### Who are the annotators?
111
+
112
+ François-Guillaume Fernandez
113
+
114
+ ### Personal and Sensitive Information
115
+
116
+ [More Information Needed]
117
+
118
+ ## Considerations for Using the Data
119
+
120
+ ### Social Impact of Dataset
121
+
122
+ [More Information Needed]
123
+
124
+ ### Discussion of Biases
125
+
126
+ [More Information Needed]
127
+
128
+ ### Other Known Limitations
129
+
130
+ [More Information Needed]
131
+
132
+ ## Additional Information
133
+
134
+ ### Dataset Curators
135
+
136
+ François-Guillaume Fernandez
137
+
138
+ ### Licensing Information
139
+
140
+ [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
141
+
142
+ ### Citation Information
143
+
144
+ ```
145
+ @software{Pyronear_PyroVision_2019,
146
+ title={Pyrovision: wildfire early detection},
147
+ author={Pyronear contributors},
148
+ year={2019},
149
+ month={October},
150
+ publisher = {GitHub},
151
+ howpublished = {\url{https://github.com/pyronear/pyro-vision}}
152
+ }
153
+ ```
dataset_infos.json ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "full_size": {
3
+ "description": "Imagenette is a subset of 10 easily classified classes from Imagenet\n(tench, English springer, cassette player, chain saw, church, French\nhorn, garbage truck, gas pump, golf ball, parachute).",
4
+ "citation": "@software{Howard_Imagenette_2019,\ntitle={Imagenette: A smaller subset of 10 easily classified classes from Imagenet},\nauthor={Jeremy Howard},\nyear={2019},\nmonth={March},\npublisher = {GitHub},\nurl = {https://github.com/fastai/imagenette}\n}\n",
5
+ "homepage": "https://github.com/fastai/imagenette",
6
+ "license": "Apache License 2.0",
7
+ "features": {
8
+ "image": {
9
+ "decode": true,
10
+ "id": null,
11
+ "_type": "Image"
12
+ },
13
+ "label": {
14
+ "num_classes": 10,
15
+ "names": ["tench", "English springer", "cassette player", "chain saw", "church", "French horn", "garbage truck", "gas pump", "golf ball", "parachute"],
16
+ "id": null,
17
+ "_type": "ClassLabel"
18
+ }
19
+ },
20
+ "post_processed": null,
21
+ "supervised_keys": null,
22
+ "task_templates": null,
23
+ "builder_name": "imagenette",
24
+ "config_name": "full_size",
25
+ "version": {
26
+ "version_str": "1.0.0",
27
+ "description": null,
28
+ "major": 1,
29
+ "minor": 0,
30
+ "patch": 0
31
+ },
32
+ "splits": {
33
+ "train": {
34
+ "name": "train",
35
+ "num_bytes": 1124364288,
36
+ "num_examples": 9469,
37
+ "dataset_name": "imagenette"
38
+ },
39
+ "validation": {
40
+ "name": "validation",
41
+ "num_bytes": 472133632,
42
+ "num_examples": 3925,
43
+ "dataset_name": "imagenette"
44
+ }
45
+ },
46
+ "download_checksums": {
47
+ "https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz": {
48
+ "num_bytes": 1557161267,
49
+ "checksum": "6cbfac238434d89fe99e651496f0812ebc7a10fa62bd42d6874042bf01de4efd"
50
+ }
51
+ },
52
+ "download_size": 1557161267,
53
+ "post_processing_size": null,
54
+ "dataset_size": 1597734912,
55
+ "size_in_bytes": 1597734912
56
+ },
57
+ "320px": {
58
+ "description": "Imagenette is a subset of 10 easily classified classes from Imagenet\n(tench, English springer, cassette player, chain saw, church, French\nhorn, garbage truck, gas pump, golf ball, parachute).",
59
+ "citation": "@software{Howard_Imagenette_2019,\ntitle={Imagenette: A smaller subset of 10 easily classified classes from Imagenet},\nauthor={Jeremy Howard},\nyear={2019},\nmonth={March},\npublisher = {GitHub},\nurl = {https://github.com/fastai/imagenette}\n}\n",
60
+ "homepage": "https://github.com/fastai/imagenette",
61
+ "license": "Apache License 2.0",
62
+ "features": {
63
+ "image": {
64
+ "decode": true,
65
+ "id": null,
66
+ "_type": "Image"
67
+ },
68
+ "label": {
69
+ "num_classes": 10,
70
+ "names": ["tench", "English springer", "cassette player", "chain saw", "church", "French horn", "garbage truck", "gas pump", "golf ball", "parachute"],
71
+ "id": null,
72
+ "_type": "ClassLabel"
73
+ }
74
+ },
75
+ "post_processed": null,
76
+ "supervised_keys": null,
77
+ "task_templates": null,
78
+ "builder_name": "imagenette",
79
+ "config_name": "320px",
80
+ "version": {
81
+ "version_str": "1.0.0",
82
+ "description": null,
83
+ "major": 1,
84
+ "minor": 0,
85
+ "patch": 0
86
+ },
87
+ "splits": {
88
+ "train": {
89
+ "name": "train",
90
+ "num_bytes": 265355264,
91
+ "num_examples": 9469,
92
+ "dataset_name": "imagenette"
93
+ },
94
+ "validation": {
95
+ "name": "validation",
96
+ "num_bytes": 110903296,
97
+ "num_examples": 3925,
98
+ "dataset_name": "imagenette"
99
+ }
100
+ },
101
+ "download_checksums": {
102
+ "https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz": {
103
+ "num_bytes": 341663724,
104
+ "checksum": "569b4497c98db6dd29f335d1f109cf315fe127053cedf69010d047f0188e158c"
105
+ }
106
+ },
107
+ "download_size": 341663724,
108
+ "post_processing_size": null,
109
+ "dataset_size": 377495552,
110
+ "size_in_bytes": 377495552
111
+ },
112
+ "160px": {
113
+ "description": "Imagenette is a subset of 10 easily classified classes from Imagenet\n(tench, English springer, cassette player, chain saw, church, French\nhorn, garbage truck, gas pump, golf ball, parachute).",
114
+ "citation": "@software{Howard_Imagenette_2019,\ntitle={Imagenette: A smaller subset of 10 easily classified classes from Imagenet},\nauthor={Jeremy Howard},\nyear={2019},\nmonth={March},\npublisher = {GitHub},\nurl = {https://github.com/fastai/imagenette}\n}\n",
115
+ "homepage": "https://github.com/fastai/imagenette",
116
+ "license": "Apache License 2.0",
117
+ "features": {
118
+ "image": {
119
+ "decode": true,
120
+ "id": null,
121
+ "_type": "Image"
122
+ },
123
+ "label": {
124
+ "num_classes": 10,
125
+ "names": ["tench", "English springer", "cassette player", "chain saw", "church", "French horn", "garbage truck", "gas pump", "golf ball", "parachute"],
126
+ "id": null,
127
+ "_type": "ClassLabel"
128
+ }
129
+ },
130
+ "post_processed": null,
131
+ "supervised_keys": null,
132
+ "task_templates": null,
133
+ "builder_name": "imagenette",
134
+ "config_name": "160px",
135
+ "version": {
136
+ "version_str": "1.0.0",
137
+ "description": null,
138
+ "major": 1,
139
+ "minor": 0,
140
+ "patch": 0
141
+ },
142
+ "splits": {
143
+ "train": {
144
+ "name": "train",
145
+ "num_bytes": 94937088,
146
+ "num_examples": 9470,
147
+ "dataset_name": "imagenette"
148
+ },
149
+ "validation": {
150
+ "name": "validation",
151
+ "num_bytes": 39583744,
152
+ "num_examples": 3925,
153
+ "dataset_name": "imagenette"
154
+ }
155
+ },
156
+ "download_checksums": {
157
+ "https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz": {
158
+ "num_bytes": 99003388,
159
+ "checksum": "64d0c4859f35a461889e0147755a999a48b49bf38a7e0f9bd27003f10db02fe5"
160
+ }
161
+ },
162
+ "download_size": 99003388,
163
+ "post_processing_size": null,
164
+ "dataset_size": 135766016,
165
+ "size_in_bytes": 135766016
166
+ }
167
+ }