Datasets:
frgfm
commited on
Commit
·
42bda6f
1
Parent(s):
52861f0
docs: Updated README and added dataset_infos
Browse files- README.md +151 -1
- dataset_infos.json +167 -0
README.md
CHANGED
@@ -1,3 +1,153 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language: []
|
5 |
+
language_creators:
|
6 |
+
- crowdsourced
|
7 |
+
license:
|
8 |
+
- apache-2.0
|
9 |
+
multilinguality: []
|
10 |
+
pretty_name: Wildfire image classification dataset collected using images from web
|
11 |
+
searches.
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- image-classification
|
18 |
+
task_ids:
|
19 |
+
- image-classification
|
20 |
---
|
21 |
+
|
22 |
+
# Dataset Card for OpenFire
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
- [Table of Contents](#table-of-contents)
|
26 |
+
- [Dataset Description](#dataset-description)
|
27 |
+
- [Dataset Summary](#dataset-summary)
|
28 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
29 |
+
- [Languages](#languages)
|
30 |
+
- [Dataset Structure](#dataset-structure)
|
31 |
+
- [Data Instances](#data-instances)
|
32 |
+
- [Data Fields](#data-fields)
|
33 |
+
- [Data Splits](#data-splits)
|
34 |
+
- [Dataset Creation](#dataset-creation)
|
35 |
+
- [Curation Rationale](#curation-rationale)
|
36 |
+
- [Source Data](#source-data)
|
37 |
+
- [Annotations](#annotations)
|
38 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
39 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
40 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
41 |
+
- [Discussion of Biases](#discussion-of-biases)
|
42 |
+
- [Other Known Limitations](#other-known-limitations)
|
43 |
+
- [Additional Information](#additional-information)
|
44 |
+
- [Dataset Curators](#dataset-curators)
|
45 |
+
- [Licensing Information](#licensing-information)
|
46 |
+
- [Citation Information](#citation-information)
|
47 |
+
- [Contributions](#contributions)
|
48 |
+
|
49 |
+
## Dataset Description
|
50 |
+
|
51 |
+
- **Homepage:** https://pyronear.org/pyro-vision/datasets.html#openfire
|
52 |
+
- **Repository:** https://github.com/pyronear/pyro-vision
|
53 |
+
- **Point of Contact:** Pyronear <https://pyronear.org/en/>
|
54 |
+
|
55 |
+
### Dataset Summary
|
56 |
+
|
57 |
+
OpenFire is an image classification dataset for wildfire detection, collected
|
58 |
+
from web searches.
|
59 |
+
|
60 |
+
### Supported Tasks and Leaderboards
|
61 |
+
|
62 |
+
- `image-classification`: The dataset can be used to train a model for Image Classification.
|
63 |
+
|
64 |
+
### Languages
|
65 |
+
|
66 |
+
English
|
67 |
+
|
68 |
+
## Dataset Structure
|
69 |
+
|
70 |
+
### Data Instances
|
71 |
+
|
72 |
+
A data point comprises an image URL and its binary label.
|
73 |
+
|
74 |
+
```
|
75 |
+
{
|
76 |
+
'image_url': 'https://cdn-s-www.ledauphine.com/images/13C08274-6BA6-4577-B3A0-1E6C1B2A573C/FB1200/photo-1338240831.jpg',
|
77 |
+
'is_wildfire': true,
|
78 |
+
}
|
79 |
+
```
|
80 |
+
|
81 |
+
### Data Fields
|
82 |
+
|
83 |
+
- `image_url`: the download URL of the image.
|
84 |
+
- `is_wildfire`: a boolean value specifying whether there is an ongoing wildfire on the image.
|
85 |
+
|
86 |
+
### Data Splits
|
87 |
+
|
88 |
+
The data is split into training and validation sets. The training set contains 7143 images and the validation set 792 images.
|
89 |
+
|
90 |
+
## Dataset Creation
|
91 |
+
|
92 |
+
### Curation Rationale
|
93 |
+
|
94 |
+
The curators state that the current wildfire classification datasets typically contain close-up shots of wildfires, with limited variations of weather conditions, luminosity and backrgounds,
|
95 |
+
making it difficult to assess for real world performance. They argue that the limitations of datasets have partially contributed to the failure of some algorithms in coping
|
96 |
+
with sun flares, foggy / cloudy weather conditions and small scale.
|
97 |
+
|
98 |
+
### Source Data
|
99 |
+
|
100 |
+
#### Initial Data Collection and Normalization
|
101 |
+
|
102 |
+
OpenFire was collected using images publicly indexed by the search engine DuckDuckGo using multiple relevant queries. The images were then manually cleaned to remove errors.
|
103 |
+
|
104 |
+
### Annotations
|
105 |
+
|
106 |
+
#### Annotation process
|
107 |
+
|
108 |
+
Each web search query was designed to yield a single label (with wildfire or without), and additional human verification was used to remove errors.
|
109 |
+
|
110 |
+
#### Who are the annotators?
|
111 |
+
|
112 |
+
François-Guillaume Fernandez
|
113 |
+
|
114 |
+
### Personal and Sensitive Information
|
115 |
+
|
116 |
+
[More Information Needed]
|
117 |
+
|
118 |
+
## Considerations for Using the Data
|
119 |
+
|
120 |
+
### Social Impact of Dataset
|
121 |
+
|
122 |
+
[More Information Needed]
|
123 |
+
|
124 |
+
### Discussion of Biases
|
125 |
+
|
126 |
+
[More Information Needed]
|
127 |
+
|
128 |
+
### Other Known Limitations
|
129 |
+
|
130 |
+
[More Information Needed]
|
131 |
+
|
132 |
+
## Additional Information
|
133 |
+
|
134 |
+
### Dataset Curators
|
135 |
+
|
136 |
+
François-Guillaume Fernandez
|
137 |
+
|
138 |
+
### Licensing Information
|
139 |
+
|
140 |
+
[Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|
141 |
+
|
142 |
+
### Citation Information
|
143 |
+
|
144 |
+
```
|
145 |
+
@software{Pyronear_PyroVision_2019,
|
146 |
+
title={Pyrovision: wildfire early detection},
|
147 |
+
author={Pyronear contributors},
|
148 |
+
year={2019},
|
149 |
+
month={October},
|
150 |
+
publisher = {GitHub},
|
151 |
+
howpublished = {\url{https://github.com/pyronear/pyro-vision}}
|
152 |
+
}
|
153 |
+
```
|
dataset_infos.json
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"full_size": {
|
3 |
+
"description": "Imagenette is a subset of 10 easily classified classes from Imagenet\n(tench, English springer, cassette player, chain saw, church, French\nhorn, garbage truck, gas pump, golf ball, parachute).",
|
4 |
+
"citation": "@software{Howard_Imagenette_2019,\ntitle={Imagenette: A smaller subset of 10 easily classified classes from Imagenet},\nauthor={Jeremy Howard},\nyear={2019},\nmonth={March},\npublisher = {GitHub},\nurl = {https://github.com/fastai/imagenette}\n}\n",
|
5 |
+
"homepage": "https://github.com/fastai/imagenette",
|
6 |
+
"license": "Apache License 2.0",
|
7 |
+
"features": {
|
8 |
+
"image": {
|
9 |
+
"decode": true,
|
10 |
+
"id": null,
|
11 |
+
"_type": "Image"
|
12 |
+
},
|
13 |
+
"label": {
|
14 |
+
"num_classes": 10,
|
15 |
+
"names": ["tench", "English springer", "cassette player", "chain saw", "church", "French horn", "garbage truck", "gas pump", "golf ball", "parachute"],
|
16 |
+
"id": null,
|
17 |
+
"_type": "ClassLabel"
|
18 |
+
}
|
19 |
+
},
|
20 |
+
"post_processed": null,
|
21 |
+
"supervised_keys": null,
|
22 |
+
"task_templates": null,
|
23 |
+
"builder_name": "imagenette",
|
24 |
+
"config_name": "full_size",
|
25 |
+
"version": {
|
26 |
+
"version_str": "1.0.0",
|
27 |
+
"description": null,
|
28 |
+
"major": 1,
|
29 |
+
"minor": 0,
|
30 |
+
"patch": 0
|
31 |
+
},
|
32 |
+
"splits": {
|
33 |
+
"train": {
|
34 |
+
"name": "train",
|
35 |
+
"num_bytes": 1124364288,
|
36 |
+
"num_examples": 9469,
|
37 |
+
"dataset_name": "imagenette"
|
38 |
+
},
|
39 |
+
"validation": {
|
40 |
+
"name": "validation",
|
41 |
+
"num_bytes": 472133632,
|
42 |
+
"num_examples": 3925,
|
43 |
+
"dataset_name": "imagenette"
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"download_checksums": {
|
47 |
+
"https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz": {
|
48 |
+
"num_bytes": 1557161267,
|
49 |
+
"checksum": "6cbfac238434d89fe99e651496f0812ebc7a10fa62bd42d6874042bf01de4efd"
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"download_size": 1557161267,
|
53 |
+
"post_processing_size": null,
|
54 |
+
"dataset_size": 1597734912,
|
55 |
+
"size_in_bytes": 1597734912
|
56 |
+
},
|
57 |
+
"320px": {
|
58 |
+
"description": "Imagenette is a subset of 10 easily classified classes from Imagenet\n(tench, English springer, cassette player, chain saw, church, French\nhorn, garbage truck, gas pump, golf ball, parachute).",
|
59 |
+
"citation": "@software{Howard_Imagenette_2019,\ntitle={Imagenette: A smaller subset of 10 easily classified classes from Imagenet},\nauthor={Jeremy Howard},\nyear={2019},\nmonth={March},\npublisher = {GitHub},\nurl = {https://github.com/fastai/imagenette}\n}\n",
|
60 |
+
"homepage": "https://github.com/fastai/imagenette",
|
61 |
+
"license": "Apache License 2.0",
|
62 |
+
"features": {
|
63 |
+
"image": {
|
64 |
+
"decode": true,
|
65 |
+
"id": null,
|
66 |
+
"_type": "Image"
|
67 |
+
},
|
68 |
+
"label": {
|
69 |
+
"num_classes": 10,
|
70 |
+
"names": ["tench", "English springer", "cassette player", "chain saw", "church", "French horn", "garbage truck", "gas pump", "golf ball", "parachute"],
|
71 |
+
"id": null,
|
72 |
+
"_type": "ClassLabel"
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"post_processed": null,
|
76 |
+
"supervised_keys": null,
|
77 |
+
"task_templates": null,
|
78 |
+
"builder_name": "imagenette",
|
79 |
+
"config_name": "320px",
|
80 |
+
"version": {
|
81 |
+
"version_str": "1.0.0",
|
82 |
+
"description": null,
|
83 |
+
"major": 1,
|
84 |
+
"minor": 0,
|
85 |
+
"patch": 0
|
86 |
+
},
|
87 |
+
"splits": {
|
88 |
+
"train": {
|
89 |
+
"name": "train",
|
90 |
+
"num_bytes": 265355264,
|
91 |
+
"num_examples": 9469,
|
92 |
+
"dataset_name": "imagenette"
|
93 |
+
},
|
94 |
+
"validation": {
|
95 |
+
"name": "validation",
|
96 |
+
"num_bytes": 110903296,
|
97 |
+
"num_examples": 3925,
|
98 |
+
"dataset_name": "imagenette"
|
99 |
+
}
|
100 |
+
},
|
101 |
+
"download_checksums": {
|
102 |
+
"https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz": {
|
103 |
+
"num_bytes": 341663724,
|
104 |
+
"checksum": "569b4497c98db6dd29f335d1f109cf315fe127053cedf69010d047f0188e158c"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"download_size": 341663724,
|
108 |
+
"post_processing_size": null,
|
109 |
+
"dataset_size": 377495552,
|
110 |
+
"size_in_bytes": 377495552
|
111 |
+
},
|
112 |
+
"160px": {
|
113 |
+
"description": "Imagenette is a subset of 10 easily classified classes from Imagenet\n(tench, English springer, cassette player, chain saw, church, French\nhorn, garbage truck, gas pump, golf ball, parachute).",
|
114 |
+
"citation": "@software{Howard_Imagenette_2019,\ntitle={Imagenette: A smaller subset of 10 easily classified classes from Imagenet},\nauthor={Jeremy Howard},\nyear={2019},\nmonth={March},\npublisher = {GitHub},\nurl = {https://github.com/fastai/imagenette}\n}\n",
|
115 |
+
"homepage": "https://github.com/fastai/imagenette",
|
116 |
+
"license": "Apache License 2.0",
|
117 |
+
"features": {
|
118 |
+
"image": {
|
119 |
+
"decode": true,
|
120 |
+
"id": null,
|
121 |
+
"_type": "Image"
|
122 |
+
},
|
123 |
+
"label": {
|
124 |
+
"num_classes": 10,
|
125 |
+
"names": ["tench", "English springer", "cassette player", "chain saw", "church", "French horn", "garbage truck", "gas pump", "golf ball", "parachute"],
|
126 |
+
"id": null,
|
127 |
+
"_type": "ClassLabel"
|
128 |
+
}
|
129 |
+
},
|
130 |
+
"post_processed": null,
|
131 |
+
"supervised_keys": null,
|
132 |
+
"task_templates": null,
|
133 |
+
"builder_name": "imagenette",
|
134 |
+
"config_name": "160px",
|
135 |
+
"version": {
|
136 |
+
"version_str": "1.0.0",
|
137 |
+
"description": null,
|
138 |
+
"major": 1,
|
139 |
+
"minor": 0,
|
140 |
+
"patch": 0
|
141 |
+
},
|
142 |
+
"splits": {
|
143 |
+
"train": {
|
144 |
+
"name": "train",
|
145 |
+
"num_bytes": 94937088,
|
146 |
+
"num_examples": 9470,
|
147 |
+
"dataset_name": "imagenette"
|
148 |
+
},
|
149 |
+
"validation": {
|
150 |
+
"name": "validation",
|
151 |
+
"num_bytes": 39583744,
|
152 |
+
"num_examples": 3925,
|
153 |
+
"dataset_name": "imagenette"
|
154 |
+
}
|
155 |
+
},
|
156 |
+
"download_checksums": {
|
157 |
+
"https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz": {
|
158 |
+
"num_bytes": 99003388,
|
159 |
+
"checksum": "64d0c4859f35a461889e0147755a999a48b49bf38a7e0f9bd27003f10db02fe5"
|
160 |
+
}
|
161 |
+
},
|
162 |
+
"download_size": 99003388,
|
163 |
+
"post_processing_size": null,
|
164 |
+
"dataset_size": 135766016,
|
165 |
+
"size_in_bytes": 135766016
|
166 |
+
}
|
167 |
+
}
|