File size: 5,310 Bytes
52861f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
713dd4b
52861f0
 
a41adbe
90acb11
52861f0
3402e41
90acb11
52861f0
 
3402e41
52861f0
 
a41adbe
52861f0
3402e41
52861f0
 
a41adbe
 
52861f0
 
a41adbe
52861f0
 
 
713dd4b
7ceb202
713dd4b
 
52861f0
a41adbe
52861f0
 
 
713dd4b
 
 
 
52861f0
a41adbe
52861f0
 
 
713dd4b
 
 
 
52861f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
713dd4b
 
 
52861f0
 
 
 
713dd4b
 
52861f0
 
 
 
 
713dd4b
 
52861f0
 
 
 
713dd4b
 
 
52861f0
713dd4b
 
5491b42
713dd4b
 
 
 
44d0482
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright (C) 2022, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

"""Imagenette dataset."""

import os
import json

import datasets


_HOMEPAGE = "https://github.com/fastai/imagenette"

_LICENSE = "Apache License 2.0"

_CITATION = """\
@software{Howard_Imagenette_2019,
    title={Imagenette: A smaller subset of 10 easily classified classes from Imagenet},
    author={Jeremy Howard},
    year={2019},
    month={March},
    publisher = {GitHub},
    url = {https://github.com/fastai/imagenette}
}
"""

_DESCRIPTION = """\
Imagenette is a subset of 10 easily classified classes from Imagenet
(tench, English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, parachute).
"""

_LABEL_MAP = [
    'n01440764',
    'n02102040',
    'n02979186',
    'n03000684',
    'n03028079',
    'n03394916',
    'n03417042',
    'n03425413',
    'n03445777',
    'n03888257',
]

_REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata"


class ImagenetteConfig(datasets.BuilderConfig):
    """BuilderConfig for Imagette."""

    def __init__(self, data_url, metadata_urls, **kwargs):
        """BuilderConfig for Imagette.
        Args:
          data_url: `string`, url to download the zip file from.
          matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
          **kwargs: keyword arguments forwarded to super.
        """
        super(ImagenetteConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_url = data_url
        self.metadata_urls = metadata_urls


class Imagenette(datasets.GeneratorBasedBuilder):
    """Imagenette dataset."""

    BUILDER_CONFIGS = [
        ImagenetteConfig(
            name="full_size",
            description="All images are in their original size.",
            data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz",
            metadata_urls={
                "train": f"{_REPO}/imagenette2/train.txt",
                "validation": f"{_REPO}/imagenette2/val.txt",
            },
        ),
        ImagenetteConfig(
            name="320px",
            description="All images were resized on their shortest side to 320 pixels.",
            data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz",
            metadata_urls={
                "train": f"{_REPO}/imagenette2-320/train.txt",
                "validation": f"{_REPO}/imagenette2-320/val.txt",
            },
        ),
        ImagenetteConfig(
            name="160px",
            description="All images were resized on their shortest side to 160 pixels.",
            data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz",
            metadata_urls={
                "train": f"{_REPO}/imagenette2-160/train.txt",
                "validation": f"{_REPO}/imagenette2-160/val.txt",
            },
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION + self.config.description,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "label": datasets.ClassLabel(
                        names=[
                            "tench",
                            "English springer",
                            "cassette player",
                            "chain saw",
                            "church",
                            "French horn",
                            "garbage truck",
                            "gas pump",
                            "golf ball",
                            "parachute",
                        ]
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive_path = dl_manager.download(self.config.data_url)
        metadata_paths = dl_manager.download(self.config.metadata_urls)
        archive_iter = dl_manager.iter_archive(archive_path)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": archive_iter,
                    "metadata_path": metadata_paths["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "images": archive_iter,
                    "metadata_path": metadata_paths["validation"],
                },
            ),
        ]

    def _generate_examples(self, images, metadata_path):
        with open(metadata_path, encoding="utf-8") as f:
            files_to_keep = set(f.read().split("\n"))
        idx = 0
        for file_path, file_obj in images:
            if file_path in files_to_keep:
                label = _LABEL_MAP.index(file_path.split("/")[-2])
                yield idx, {
                    "image": {"path": file_path, "bytes": file_obj.read()},
                    "label": label,
                }
                idx += 1