Datasets:
File size: 5,310 Bytes
52861f0 713dd4b 52861f0 a41adbe 90acb11 52861f0 3402e41 90acb11 52861f0 3402e41 52861f0 a41adbe 52861f0 3402e41 52861f0 a41adbe 52861f0 a41adbe 52861f0 713dd4b 7ceb202 713dd4b 52861f0 a41adbe 52861f0 713dd4b 52861f0 a41adbe 52861f0 713dd4b 52861f0 713dd4b 52861f0 713dd4b 52861f0 713dd4b 52861f0 713dd4b 52861f0 713dd4b 5491b42 713dd4b 44d0482 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# Copyright (C) 2022, François-Guillaume Fernandez.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
"""Imagenette dataset."""
import os
import json
import datasets
_HOMEPAGE = "https://github.com/fastai/imagenette"
_LICENSE = "Apache License 2.0"
_CITATION = """\
@software{Howard_Imagenette_2019,
title={Imagenette: A smaller subset of 10 easily classified classes from Imagenet},
author={Jeremy Howard},
year={2019},
month={March},
publisher = {GitHub},
url = {https://github.com/fastai/imagenette}
}
"""
_DESCRIPTION = """\
Imagenette is a subset of 10 easily classified classes from Imagenet
(tench, English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, parachute).
"""
_LABEL_MAP = [
'n01440764',
'n02102040',
'n02979186',
'n03000684',
'n03028079',
'n03394916',
'n03417042',
'n03425413',
'n03445777',
'n03888257',
]
_REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata"
class ImagenetteConfig(datasets.BuilderConfig):
"""BuilderConfig for Imagette."""
def __init__(self, data_url, metadata_urls, **kwargs):
"""BuilderConfig for Imagette.
Args:
data_url: `string`, url to download the zip file from.
matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
**kwargs: keyword arguments forwarded to super.
"""
super(ImagenetteConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.data_url = data_url
self.metadata_urls = metadata_urls
class Imagenette(datasets.GeneratorBasedBuilder):
"""Imagenette dataset."""
BUILDER_CONFIGS = [
ImagenetteConfig(
name="full_size",
description="All images are in their original size.",
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz",
metadata_urls={
"train": f"{_REPO}/imagenette2/train.txt",
"validation": f"{_REPO}/imagenette2/val.txt",
},
),
ImagenetteConfig(
name="320px",
description="All images were resized on their shortest side to 320 pixels.",
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz",
metadata_urls={
"train": f"{_REPO}/imagenette2-320/train.txt",
"validation": f"{_REPO}/imagenette2-320/val.txt",
},
),
ImagenetteConfig(
name="160px",
description="All images were resized on their shortest side to 160 pixels.",
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz",
metadata_urls={
"train": f"{_REPO}/imagenette2-160/train.txt",
"validation": f"{_REPO}/imagenette2-160/val.txt",
},
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION + self.config.description,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(
names=[
"tench",
"English springer",
"cassette player",
"chain saw",
"church",
"French horn",
"garbage truck",
"gas pump",
"golf ball",
"parachute",
]
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download(self.config.data_url)
metadata_paths = dl_manager.download(self.config.metadata_urls)
archive_iter = dl_manager.iter_archive(archive_path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": archive_iter,
"metadata_path": metadata_paths["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"images": archive_iter,
"metadata_path": metadata_paths["validation"],
},
),
]
def _generate_examples(self, images, metadata_path):
with open(metadata_path, encoding="utf-8") as f:
files_to_keep = set(f.read().split("\n"))
idx = 0
for file_path, file_obj in images:
if file_path in files_to_keep:
label = _LABEL_MAP.index(file_path.split("/")[-2])
yield idx, {
"image": {"path": file_path, "bytes": file_obj.read()},
"label": label,
}
idx += 1
|