File size: 4,205 Bytes
52861f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (C) 2022, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

"""Imagenette dataset."""

import os
import json

import datasets


_HOMEPAGE = "https://github.com/fastai/imagenette"

_LICENSE = "Apache License 2.0"

_CITATION = """\
@software{Howard_Imagenette_2019,
    title={Imagenette: A smaller subset of 10 easily classified classes from Imagenet},
    author={Jeremy Howard},
    year={2019},
    month={March},
    publisher = {GitHub},
    url = {https://github.com/fastai/imagenette}
}
"""

_DESCRIPTION = """\
Imagenette is a subset of 10 easily classified classes from Imagenet
(tench, English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, parachute).
"""

_LABEL_MAP = [
    'n01440764',
    'n02102040',
    'n02979186',
    'n03000684',
    'n03028079',
    'n03394916',
    'n03417042',
    'n03425413',
    'n03445777',
    'n03888257',
]



class OpenFireConfig(datasets.BuilderConfig):
    """BuilderConfig for OpenFire."""

    def __init__(self, data_url, **kwargs):
        """BuilderConfig for OpenFire.
        Args:
          data_url: `string`, url to download the zip file from.
          **kwargs: keyword arguments forwarded to super.
        """
        super(OpenFireConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_url = data_url


class OpenFire(datasets.GeneratorBasedBuilder):
    """OpenFire dataset."""

    BUILDER_CONFIGS = [
        OpenFireConfig(
            name="full_size",
            description="All images are in their original size.",
            data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz",
        ),
        OpenFireConfig(
            name="320px",
            description="All images were resized on their shortest side to 320 pixels.",
            data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz",
        ),
        OpenFireConfig(
            name="160px",
            description="All images were resized on their shortest side to 160 pixels.",
            data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION + self.config.description,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "label": datasets.ClassLabel(
                        names=[
                            "tench",
                            "English springer",
                            "cassette player",
                            "chain saw",
                            "church",
                            "French horn",
                            "garbage truck",
                            "gas pump",
                            "golf ball",
                            "parachute",
                        ]
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(self.config.data_url)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "image_folder": os.path.join(data_dir, "train"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "image_folder": os.path.join(data_dir, "val"),
                    "split": "validation",
                },
            ),
        ]

    def _generate_examples(self, image_folder, split):
        idx = 0
        for class_idx, class_folder in _LABEL_MAP:
            for filepath in os.listdir(class_folder):
                yield idx, {"image": os.path.join(image_folder, class_folder, filepath), "label": class_idx}
                idx += 1