|
|
|
import json
|
|
import os
|
|
|
|
import datasets
|
|
|
|
from PIL import Image
|
|
import numpy as np
|
|
|
|
logger = datasets.logging.get_logger(__name__)
|
|
|
|
|
|
_CITATION = """\
|
|
@article{vu2020revising,
|
|
title={Revising FUNSD dataset for key-value detection in document images},
|
|
author={Vu, Hieu M and Nguyen, Diep Thi-Ngoc},
|
|
journal={arXiv preprint arXiv:2010.05322},
|
|
year={2020}
|
|
}
|
|
"""
|
|
_DESCRIPTION = """\
|
|
FUNSD is one of the limited publicly available datasets for information extraction from document images.
|
|
The information in the FUNSD dataset is defined by text areas of four categories ("key", "value", "header", "other", and "background")
|
|
and connectivity between areas as key-value relations. Inspecting FUNSD, we found several inconsistency in labeling, which impeded its
|
|
applicability to the key-value extraction problem. In this report, we described some labeling issues in FUNSD and the revision we made
|
|
to the dataset.
|
|
"""
|
|
|
|
_URL = """\
|
|
https://drive.google.com/drive/folders/1HjJyoKqAh-pvtg3eQAmrbfzPccQZ48rz
|
|
"""
|
|
|
|
|
|
def load_image(image_path):
|
|
image = Image.open(image_path).convert("RGB")
|
|
w, h = image.size
|
|
return image, (w, h)
|
|
|
|
|
|
def normalize_bbox(bbox, size):
|
|
return [
|
|
int(1000 * bbox[0] / size[0]),
|
|
int(1000 * bbox[1] / size[1]),
|
|
int(1000 * bbox[2] / size[0]),
|
|
int(1000 * bbox[3] / size[1]),
|
|
]
|
|
|
|
|
|
class FunsdConfig(datasets.BuilderConfig):
|
|
"""BuilderConfig for FUNSD"""
|
|
|
|
def __init__(self, **kwargs):
|
|
"""BuilderConfig for FUNSD.
|
|
|
|
Args:
|
|
**kwargs: keyword arguments forwarded to super.
|
|
"""
|
|
super(FunsdConfig, self).__init__(**kwargs)
|
|
|
|
|
|
class Funsd(datasets.GeneratorBasedBuilder):
|
|
"""FUNSD: Form Understanding in Noisy Scanned Documents."""
|
|
|
|
BUILDER_CONFIGS = [
|
|
FunsdConfig(
|
|
name="funsd_vu2020revising",
|
|
version=datasets.Version("1.0.0"),
|
|
description="Revised FUNSD dataset",
|
|
),
|
|
]
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=datasets.Features(
|
|
{
|
|
"id": datasets.Value("string"),
|
|
"words": datasets.Sequence(datasets.Value("string")),
|
|
"bboxes": datasets.Sequence(
|
|
datasets.Sequence(datasets.Value("int64"))
|
|
),
|
|
"ner_tags": datasets.Sequence(
|
|
datasets.features.ClassLabel(
|
|
names=[
|
|
"O",
|
|
"B-HEADER",
|
|
"I-HEADER",
|
|
"B-QUESTION",
|
|
"I-QUESTION",
|
|
"B-ANSWER",
|
|
"I-ANSWER",
|
|
]
|
|
)
|
|
),
|
|
"image_path": datasets.Value("string"),
|
|
}
|
|
),
|
|
supervised_keys=None,
|
|
homepage="https://guillaumejaume.github.io/FUNSD/",
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""Returns SplitGenerators."""
|
|
downloaded_file = dl_manager.download_and_extract(
|
|
"https://drive.google.com/uc?export=download&id=1wdJJQgRIb1c404SJnX1dyBSi7U2mVduI"
|
|
)
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={"filepath": f"{downloaded_file}/FUNSD/training_data/"},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={"filepath": f"{downloaded_file}/FUNSD/testing_data/"},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, filepath):
|
|
logger.info("⏳ Generating examples from = %s", filepath)
|
|
ann_dir = os.path.join(filepath, "adjusted_annotations")
|
|
img_dir = os.path.join(filepath, "images")
|
|
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
|
|
words = []
|
|
bboxes = []
|
|
ner_tags = []
|
|
file_path = os.path.join(ann_dir, file)
|
|
with open(file_path, "r", encoding="utf8") as f:
|
|
data = json.load(f)
|
|
image_path = os.path.join(img_dir, file)
|
|
image_path = image_path.replace("json", "png")
|
|
_, size = load_image(image_path)
|
|
for item in data["form"]:
|
|
words_example, label = item["words"], item["label"]
|
|
words_example = [w for w in words_example if w["text"].strip() != ""]
|
|
if len(words_example) == 0:
|
|
continue
|
|
if label == "other":
|
|
for w in words_example:
|
|
words.append(w["text"])
|
|
ner_tags.append("O")
|
|
bboxes.append(normalize_bbox(w["box"], size))
|
|
else:
|
|
words.append(words_example[0]["text"])
|
|
ner_tags.append("B-" + label.upper())
|
|
bboxes.append(normalize_bbox(words_example[0]["box"], size))
|
|
for w in words_example[1:]:
|
|
words.append(w["text"])
|
|
ner_tags.append("I-" + label.upper())
|
|
bboxes.append(normalize_bbox(w["box"], size))
|
|
yield guid, {
|
|
"id": str(guid),
|
|
"words": words,
|
|
"bboxes": bboxes,
|
|
"ner_tags": ner_tags,
|
|
"image_path": image_path,
|
|
}
|
|
|