# coding=utf-8 # Copyright 2021 Artem Ploujnikov # Lint as: python3 import json import datasets _DESCRIPTION = """\ Grapheme-to-Phoneme training, validation and test sets """ _BASE_URL = "https://huggingface.co/datasets/flexthink/librig2p-nostress-space/resolve/main/dataset" _HOMEPAGE_URL = "https://github.com/flexthink/librig2p-nostress-space/tree/develop" _PHONEMES = [ "AA", "AE", "AH", "AO", "AW", "AY", "B", "CH", "D", "DH", "EH", "ER", "EY", "F", "G", "HH", "IH", "IY", "JH", "K", "L", "M", "N", "NG", "OW", "OY", "P", "R", "S", "SH", "T", "TH", "UH", "UW", "V", "W", "Y", "Z", "ZH", " " ] _ORIGINS = ["librispeech", "librispeech-lex", "wikipedia-homograph"] _NA = "N/A" _SPLIT_TYPES = ["train", "valid", "test"] _DATA_TYPES = ["lexicon", "sentence", "homograph"] _SPLITS = [ f"{data_type}_{split_type}" for data_type in _DATA_TYPES for split_type in _SPLIT_TYPES] class GraphemeToPhoneme(datasets.GeneratorBasedBuilder): def __init__(self, base_url=None, splits=None, *args, **kwargs): super().__init__(*args, **kwargs) self.base_url = base_url or _BASE_URL self.splits = splits or _SPLITS def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "speaker_id": datasets.Value("string"), "origin": datasets.ClassLabel(names=_ORIGINS), "char": datasets.Value("string"), "phn": datasets.Sequence(datasets.ClassLabel(names=_PHONEMES)), "homograph": datasets.Value("string"), "homograph_wordid": datasets.Value("string"), "homograph_char_start": datasets.Value("int32"), "homograph_char_end": datasets.Value("int32"), "homograph_phn_start": datasets.Value("int32"), "homograph_phn_end": datasets.Value("int32"), }, ), supervised_keys=None, homepage=_HOMEPAGE_URL, ) def _get_url(self, split): return f'{self.base_url}/{split}.json' def _split_generator(self, dl_manager, split): url = self._get_url(split) path = dl_manager.download_and_extract(url) return datasets.SplitGenerator( name=split, gen_kwargs={"datapath": path, "datatype": split}, ) def _split_generators(self, dl_manager): return [ self._split_generator(dl_manager, split) for split in self.splits ] def _generate_examples(self, datapath, datatype): with open(datapath, encoding="utf-8") as f: data = json.load(f) for sentence_counter, (item_id, item) in enumerate(data.items()): resp = { "id": item_id, "speaker_id": str(item.get("speaker_id") or _NA), "origin": item["origin"], "char": item["char"], "phn": item["phn"], "homograph": item.get("homograph", _NA), "homograph_wordid": item.get("homograph_wordid", _NA), "homograph_char_start": item.get("homograph_char_start", 0), "homograph_char_end": item.get("homograph_char_end", 0), "homograph_phn_start": item.get("homograph_phn_start", 0), "homograph_phn_end": item.get("homograph_phn_end", 0) } yield sentence_counter, resp