File size: 8,719 Bytes
d094b68
 
 
 
 
5ce5373
d094b68
5ce5373
d094b68
 
 
 
 
 
 
 
 
 
 
 
c9b6360
 
d094b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- cc-by-nc-sa-4.0
multilinguality:
- multilingual
pretty_name: stackexchange
size_categories:
- unknown
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- closed-domain-qa
tags:
- sentence-transformers
---

# Dataset Card Creation Guide

## Table of Contents
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)s
  - [Additional Information](#additional-information)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [stackexchange](https://archive.org/details/stackexchange)
- **Repository:** [flax-sentence-embeddings](https://github.com/nreimers/flax-sentence-embeddings)

### Dataset Summary

We automatically extracted question and answer (Q&A) pairs from [Stack Exchange](https://stackexchange.com/) network. Stack Exchange gather many Q&A communities across 50 online plateform, including the well known Stack Overflow and other technical sites. 100 millon developpers consult Stack Exchange every month. The dataset is a parallel corpus with each question mapped to the top rated answer. The dataset is split given communities which cover a variety of domains from 3d printing, economics, raspberry pi or emacs. An exhaustive list of all communities is available [here](https://stackexchange.com/sites).

### Languages

Stack Exchange mainly consist of english language (en).

## Dataset Structure

### Data Instances

Each data samples is presented as follow:

```
{'title_body': 'How to determine if 3 points on a 3-D graph are collinear? Let the points $A, B$ and $C$ be $(x_1, y_1, z_1), (x_2, y_2, z_2)$ and $(x_3, y_3, z_3)$ respectively. How do I prove that the 3 points are collinear? What is the formula?',
 'upvoted_answer': 'From $A(x_1,y_1,z_1),B(x_2,y_2,z_2),C(x_3,y_3,z_3)$ we can get their position vectors.\n\n$\\vec{AB}=(x_2-x_1,y_2-y_1,z_2-z_1)$ and $\\vec{AC}=(x_3-x_1,y_3-y_1,z_3-z_1)$.\n\nThen $||\\vec{AB}\\times\\vec{AC}||=0\\implies A,B,C$ collinear.',
```

This particular exampe corresponds to the [following page](https://math.stackexchange.com/questions/947555/how-to-determine-if-3-points-on-a-3-d-graph-are-collinear)

### Data Fields

The fields present in the dataset contain the following informations:

- `title_body`: This is the concatenation of the title and body from the question
- `upvoted_answer`: This is the body from the most upvoted answer

### Data Splits

We provide multiple splits for this dataset, which each refers to a given community channel. We detail the number of pail for each split below:


|                            | Number of pairs   |
| -----                      | ------ | 
| apple | 92,487 |
| english | 100,640 |
| codereview | 41,748 |
| dba | 71,449 |
| mathoverflow | 85,289 |
| electronics | 129,494 |
| mathematica | 59,895 |
| drupal | 67,817 |
| magento | 79,241 |
| gaming | 82,887 |
| ell | 77,892 |
| gamedev | 40,154 |
| gis | 100,254 |
| askubuntu | 267,135 |
| diy | 52,896 |
| academia | 32,137 |
| blender | 54,153 |
| cs | 30,010 |
| chemistry | 27,061 |
| judaism | 26,085 |
| crypto | 19,404 |
| android | 38,077 |
| ja | 17,376 |
| christianity | 11,498 |
| graphicdesign | 28,083 |
| aviation | 18,755 |
| ethereum | 26,124 |
| biology | 19,277 |
| datascience | 20,503 |
| law | 16,133 |
| dsp | 17,430 |
| japanese | 20,948 |
| hermeneutics | 9,516 |
| bicycles | 15,708 |
| arduino | 16,281 |
| history | 10,766 |
| bitcoin | 22,474 |
| cooking | 22,641 |
| hinduism | 8,999 |
| codegolf | 8,211 |
| boardgames | 11,805 |
| emacs | 16,830 |
| economics | 8,844 |
| gardening | 13,246 |
| astronomy | 9,086 |
| islam | 10,052 |
| german | 13,733 |
| fitness | 8,297 |
| french | 10,578 |
| anime | 10,131 |
| craftcms | 11,236 |
| cstheory | 7,742 |
| engineering | 8,649 |
| buddhism | 6,787 |
| linguistics | 6,843 |
| ai | 5,763 |
| expressionengine | 10,742 |
| cogsci | 5,101 |
| chinese | 8,646 |
| chess | 6,392 |
| civicrm | 10,648 |
| literature | 3,539 |
| interpersonal | 3,398 |
| health | 4,494 |
| avp | 6,450 |
| earthscience | 4,396 |
| joomla | 5,887 |
| homebrew | 5,608 |
| expatriates | 4,913 |
| latin | 3,969 |
| matheducators | 2,706 |
| ham | 3,501 |
| genealogy | 2,895 |
| 3dprinting | 3,488 |
| elementaryos | 5,917 |
| bioinformatics | 3,135 |
| devops | 3,462 |
| hsm | 2,517 |
| italian | 3,101 |
| computergraphics | 2,306 |
| martialarts | 1,737 |
| bricks | 3,530 |
| freelancing | 1,663 |
| crafts | 1,659 |
| lifehacks | 2,576 |
| cseducators | 902 |
| materials | 1,101 |
| hardwarerecs | 2,050 |
| iot | 1,359 |
| eosio | 1,940 |
| languagelearning | 948 |
| korean | 1,406 |
| coffee | 1,188 |
| esperanto | 1,466 |
| beer | 1,012 |
| ebooks | 1,107 |
| iota | 775 |
| cardano | 248 |
| drones | 496 |
| conlang | 334 |
| pt | 103,277 |
| stats | 115,679 |
| unix | 155,414 |
| physics | 141,230 |
| tex | 171,628 |
| serverfault | 238,507 |
| salesforce | 87,272 |
| wordpress | 83,621 |
| softwareengineering | 51,326 |
| scifi | 54,805 |
| security | 51,355 |
| ru | 253,289 |
| superuser | 352,610 |
| sharepoint | 80,420 |
| rpg | 40,435 |
| travel | 36,533 |
| worldbuilding | 26,210 |
| meta | 1,000 |
| workplace | 24,012 |
| ux | 28,901 |
| money | 29,404 |
| webmasters | 30,370 |
| raspberrypi | 24,143 |
| photo | 23,204 |
| music | 19,936 |
| philosophy | 13,114 |
| puzzling | 17,448 |
| movies | 18,243 |
| quant | 12,933 |
| politics | 11,047 |
| space | 12,893 |
| mechanics | 18,613 |
| skeptics | 8,145 |
| rus | 16,528 |
| writers | 9,867 |
| webapps | 24,867 |
| softwarerecs | 11,761 |
| networkengineering | 12,590 |
| parenting | 5,998 |
| scicomp | 7,036 |
| sqa | 9,256 |
| sitecore | 7,838 |
| vi | 9,000 |
| spanish | 7,675 |
| pm | 5,435 |
| pets | 6,156 |
| sound | 8,303 |
| reverseengineering | 5,817 |
| outdoors | 5,278 |
| tridion | 5,907 |
| retrocomputing | 3,907 |
| robotics | 4,648 |
| quantumcomputing | 4,320 |
| sports | 4,707 |
| russian | 3,937 |
| opensource | 3,221 |
| woodworking | 2,955 |
| patents | 3,573 |
| tor | 4,167 |
| ukrainian | 1,767 |
| opendata | 3,842 |
| monero | 3,508 |
| sustainability | 1,674 |
| portuguese | 1,964 |
| mythology | 1,595 |
| musicfans | 2,431 |
| or | 1,490 |
| poker | 1,665 |
| windowsphone | 2,807 |
| moderators | 504 |
| stackapps | 1,518 |
| stellar | 1,078 |
| vegetarianism | 585 |
| tezos | 1,169 |
| total | 4,750,619 |

## Dataset Creation

### Curation Rationale

We primary designed this dataset for sentence embeddings training. Indeed sentence embeddings may be trained using a contrastive learning setup for which the model is trained to associate each sentence with its corresponding pair out of multiple proposition. Such models require many examples to be efficient and thus the dataset creation may be tedious. Community networks such as Stack Exchange allow us to build many examples semi-automatically.

### Source Data

The source data are dumps from [Stack Exchange](https://archive.org/details/stackexchange)

#### Initial Data Collection and Normalization

We collected the data from the math community. 

We filtered out questions which title or body length is bellow 20 characters and questions for which body length is above 4096 characters.
When extracting most upvoted answer, we filtered to pairs for which their is at least 100 votes gap between most upvoted and downvoted answers.

#### Who are the source language producers?

Questions and answers are written by the community developpers of Stack Exchange.

## Additional Information

### Licensing Information

Please see the license information at: https://archive.org/details/stackexchange

### Citation Information

```
@misc{StackExchangeDataset,
  author = {Flax Sentence Embeddings Team},
  title = {Stack Exchange question pairs},
  year = {2021},
  howpublished = {https://huggingface.co/datasets/flax-sentence-embeddings/},
}
```


### Contributions

Thanks to the Flax Sentence Embeddings team for adding this dataset.