File size: 2,086 Bytes
3a034e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7f049b
3a034e7
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""Cleaned dataset for Swahili Language Modeling"""


import datasets


_CITATION = """\
@InProceedings{huggingface:flax-community,
title = Cleaned dataset for Swahili Language Modeling,
authors={Fitsum, Alok, Patrick},
year={2021},
link = https://huggingface.co/datasets/flax-community/swahili-safi
}
"""

_DESCRIPTION = """Cleaned dataset for Swahili Language Modeling"""
_HOMEPAGE = "https://huggingface.co/datasets/flax-community/swahili-safi"
_LICENSE = "Attribution 4.0 International"
_REPO_URL = "https://huggingface.co/datasets/flax-community/swahili-safi/resolve/main/"
_TRAIN= [_REPO_URL + file_name for file_name in [
    "data/train.txt",
]]


class SwahiliSafi(datasets.GeneratorBasedBuilder):
    """The Swahili dataset for language modeling"""

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="swahili-safi",
            version=VERSION,
            description="Language modeling dataset for Swahili"
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        train_files = dl_manager.download(_TRAIN)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_files": train_files,
                    "split": "train",
                },
            )
        ]

    def _generate_examples(self, data_files, split):
        """Yields examples."""
        _id = 0
        for filepath in data_files:
            with open(filepath, mode="r", encoding="utf-8") as f:
                for line in f:
                    yield _id, {"text": line.strip()},
                    _id += 1