The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 15 new columns ({'0..1', '2.', '-18.540880052987553', '1.', '0.', '0.5961175514981571', '-3.9221891404520077', '-0.663805869930906', '-23.57071217463242', '-6.3193379086433055', '8.735335113785359', '0.20394010206566682', '-1.4279919412652693', '1..1', '-1.7572692339687925'}) and 15 missing columns ({'0.4', '0.2', '3.141592653589793', '1.8727585204625452', '6.283185307179586', '6.283185307179586.1', '-3.128111466577074', '0', '4.8148014442842175', '4.048477156230635', '16.814840609619992', '0.3', '1.2813934528437043', '0.1', '-33.81238065031094'}).

This happened while the csv dataset builder was generating data using

hf://datasets/feynman-integrals-nn/box/re/testing_output.csv (at revision 2c7dd7519771ee135fe3cae3393c902f17430fd0)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              0.: double
              1.: double
              2.: double
              -1.7572692339687925: double
              -6.3193379086433055: double
              0..1: double
              1..1: double
              0.20394010206566682: double
              -18.540880052987553: double
              -3.9221891404520077: double
              -0.663805869930906: double
              0.5961175514981571: double
              8.735335113785359: double
              -1.4279919412652693: double
              -23.57071217463242: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2176
              to
              {'0': Value(dtype='int64', id=None), '0.1': Value(dtype='int64', id=None), '3.141592653589793': Value(dtype='float64', id=None), '6.283185307179586': Value(dtype='float64', id=None), '4.8148014442842175': Value(dtype='float64', id=None), '0.2': Value(dtype='int64', id=None), '0.3': Value(dtype='int64', id=None), '6.283185307179586.1': Value(dtype='float64', id=None), '1.2813934528437043': Value(dtype='float64', id=None), '-33.81238065031094': Value(dtype='float64', id=None), '0.4': Value(dtype='int64', id=None), '-3.128111466577074': Value(dtype='float64', id=None), '1.8727585204625452': Value(dtype='float64', id=None), '16.814840609619992': Value(dtype='float64', id=None), '4.048477156230635': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 15 new columns ({'0..1', '2.', '-18.540880052987553', '1.', '0.', '0.5961175514981571', '-3.9221891404520077', '-0.663805869930906', '-23.57071217463242', '-6.3193379086433055', '8.735335113785359', '0.20394010206566682', '-1.4279919412652693', '1..1', '-1.7572692339687925'}) and 15 missing columns ({'0.4', '0.2', '3.141592653589793', '1.8727585204625452', '6.283185307179586', '6.283185307179586.1', '-3.128111466577074', '0', '4.8148014442842175', '4.048477156230635', '16.814840609619992', '0.3', '1.2813934528437043', '0.1', '-33.81238065031094'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/feynman-integrals-nn/box/re/testing_output.csv (at revision 2c7dd7519771ee135fe3cae3393c902f17430fd0)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

0
int64
0.1
int64
3.141592653589793
float64
6.283185307179586
float64
4.8148014442842175
float64
0.2
int64
0.3
int64
6.283185307179586.1
float64
1.2813934528437043
float64
-33.81238065031094
float64
0.4
int64
-3.128111466577074
float64
1.8727585204625452
float64
16.814840609619992
float64
4.048477156230635
float64
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.338348
-23.712714
0
-15.503153
1.010009
88.294098
40.144611
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.657282
-31.39618
0
-6.276884
2.30072
34.39311
11.247679
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.792821
-29.11046
0
-8.817649
2.233023
48.921084
18.185766
0
0
3.141593
6.283185
4.814801
0
0
6.283185
1.410392
-33.784748
0
-3.192998
1.889754
17.171491
4.177361
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.947245
-28.917035
0
-9.037049
2.214549
50.188116
18.824979
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.193111
-23.973122
0
-15.148906
1.103653
86.171518
38.861301
0
0
3.141593
6.283185
4.814801
0
0
6.283185
10.202427
-25.659864
0
-12.939129
1.622711
73.017599
31.145459
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.893864
-31.178712
0
-6.517735
2.307197
35.758219
11.86663
0
0
3.141593
6.283185
4.814801
0
0
6.283185
8.579565
-28.085431
0
-9.993847
2.113764
55.735263
21.682046
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.428301
-23.549744
0
-15.726701
0.949523
89.635459
40.960876
0
0
3.141593
6.283185
4.814801
0
0
6.283185
6.034421
-31.045291
0
-6.665182
2.30969
36.59524
12.249766
0
0
3.141593
6.283185
4.814801
0
0
6.283185
6.875122
-30.181632
0
-7.619411
2.300529
42.035413
14.804081
0
0
3.141593
6.283185
4.814801
0
0
6.283185
3.946145
-32.703859
0
-4.780465
2.186189
25.973851
7.60504
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.282729
-31.722258
0
-5.913642
2.285085
32.339399
10.330708
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.428543
-26.868812
0
-11.439686
1.904329
64.18162
26.205527
0
0
3.141593
6.283185
4.814801
0
0
6.283185
0.514482
-33.921981
0
-2.768683
1.77022
14.844057
3.35288
0
0
3.141593
6.283185
4.814801
0
0
6.283185
10.694482
-24.841614
0
-13.993166
1.389616
79.272886
34.762733
0
0
3.141593
6.283185
4.814801
0
0
6.283185
4.867221
-32.057866
0
-5.535222
2.260876
30.206567
9.397181
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.233522
-23.901002
0
-15.246652
1.078088
86.756821
39.214146
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.101485
-31.872029
0
-5.745494
2.275356
31.390839
9.913115
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.687273
-31.369105
0
-6.306917
2.301693
34.563184
11.324388
0
0
3.141593
6.283185
4.814801
0
0
6.283185
4.207247
-32.534449
0
-4.983306
2.209923
27.108544
8.077225
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.856713
-31.213451
0
-6.479311
2.306365
35.540258
11.76731
0
0
3.141593
6.283185
4.814801
0
0
6.283185
8.935617
-27.589161
0
-10.576526
2.037223
59.130152
23.475841
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.105033
-24.12941
0
-14.93803
1.158091
84.909769
38.103351
0
0
3.141593
6.283185
4.814801
0
0
6.283185
2.514439
-33.439923
0
-3.806366
2.029826
20.555512
5.441881
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.764526
-22.929198
0
-16.59119
0.705775
94.836372
44.163788
0
0
3.141593
6.283185
4.814801
0
0
6.283185
10.761419
-24.727325
0
-14.143037
1.354276
80.165157
35.286499
0
0
3.141593
6.283185
4.814801
0
0
6.283185
8.748217
-27.852877
0
-10.265731
2.07942
57.317813
22.514069
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.741601
-22.972082
0
-16.530764
0.72331
94.472139
43.937538
0
0
3.141593
6.283185
4.814801
0
0
6.283185
10.874167
-24.533207
0
-14.399115
1.292669
81.691345
36.186791
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.654693
-29.280257
0
-8.625919
2.247678
47.815401
17.632149
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.746414
-26.383774
0
-12.033319
1.800225
67.670767
28.131716
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.410288
-31.613715
0
-6.034925
2.291111
33.024423
10.634636
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.512736
-26.741908
0
-11.594007
1.878233
65.087498
26.702477
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.402638
-26.907632
0
-11.392619
1.912151
63.905494
26.054492
0
0
3.141593
6.283185
4.814801
0
0
6.283185
3.085491
-33.185447
0
-4.168518
2.096666
22.563844
6.225114
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.25082
-27.13299
0
-11.120643
1.95607
62.311426
25.186653
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.064252
-24.201356
0
-14.841387
1.182708
84.331966
37.757487
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.1384
-27.297501
0
-10.92344
1.986531
61.15723
24.562671
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.807966
-22.847712
0
-16.706293
0.672171
95.530468
44.595738
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.214393
-31.779342
0
-5.849673
2.281574
31.978375
10.171322
0
0
3.141593
6.283185
4.814801
0
0
6.283185
6.812056
-30.250323
0
-7.543315
2.302792
41.600134
14.595746
0
0
3.141593
6.283185
4.814801
0
0
6.283185
8.097855
-28.724731
0
-9.256287
2.194315
51.456091
19.469731
0
0
3.141593
6.283185
4.814801
0
0
6.283185
6.944215
-30.10565
0
-7.70366
2.297729
42.517616
15.035653
0
0
3.141593
6.283185
4.814801
0
0
6.283185
8.616141
-28.035381
0
-10.052193
2.1066
56.074646
21.859857
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.202257
-27.204301
0
-11.035023
1.96944
61.810138
24.915191
0
0
3.141593
6.283185
4.814801
0
0
6.283185
1.287657
-33.8111
0
-3.131232
1.873586
16.831984
4.054652
0
0
3.141593
6.283185
4.814801
0
0
6.283185
10.223448
-25.625696
0
-12.982491
1.613671
73.274229
31.29195
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.813832
-29.084365
0
-8.847185
2.230641
49.091546
18.271466
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.130308
-24.084688
0
-14.998241
1.142648
85.269896
38.319309
0
0
3.141593
6.283185
4.814801
0
0
6.283185
10.185712
-25.686983
0
-12.904754
1.629843
72.814192
31.029468
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.775961
-29.131347
0
-8.794021
2.234905
48.784743
18.117288
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.611127
-23.214547
0
-16.191034
0.820517
92.426283
42.672124
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.631643
-31.419213
0
-6.251323
2.299854
34.248391
11.182499
0
0
3.141593
6.283185
4.814801
0
0
6.283185
10.544196
-25.095615
0
-13.662438
1.465702
77.306346
33.615162
0
0
3.141593
6.283185
4.814801
0
0
6.283185
8.092803
-28.73124
0
-9.248848
2.19503
51.413034
19.447754
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.065983
-27.402409
0
-10.798264
2.005252
60.42531
24.16891
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.026922
-31.932126
0
-5.677715
2.270973
31.008864
9.74604
0
0
3.141593
6.283185
4.814801
0
0
6.283185
0.921705
-33.87544
0
-2.954068
1.824931
15.85951
3.707696
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.991679
-28.860675
0
-9.101184
2.208811
50.558854
19.012975
0
0
3.141593
6.283185
4.814801
0
0
6.283185
6.646208
-30.427941
0
-7.346811
2.307445
40.477248
14.06142
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.42268
-29.55863
0
-8.313208
2.268519
46.015183
16.739293
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.248077
-23.874963
0
-15.282012
1.068788
86.968625
39.342024
0
0
3.141593
6.283185
4.814801
0
0
6.283185
10.039082
-25.922975
0
-12.607083
1.690318
71.054446
30.030373
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.427348
-26.870605
0
-11.437511
1.904692
64.168857
26.198542
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.681602
-29.247416
0
-8.662941
2.244958
48.028789
17.738686
0
0
3.141593
6.283185
4.814801
0
0
6.283185
8.228773
-28.554639
0
-9.451176
2.174874
52.584794
20.047863
0
0
3.141593
6.283185
4.814801
0
0
6.283185
1.933569
-33.645529
0
-3.470249
1.957525
18.69833
4.738846
0
0
3.141593
6.283185
4.814801
0
0
6.283185
10.722517
-24.793833
0
-14.055742
1.374925
79.645351
34.981139
0
0
3.141593
6.283185
4.814801
0
0
6.283185
6.962856
-30.08502
0
-7.726549
2.296915
42.648675
15.098733
0
0
3.141593
6.283185
4.814801
0
0
6.283185
-0.05298
-33.942821
0
-2.52959
1.693503
13.53776
2.908417
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.558869
-26.671894
0
-11.679446
1.86349
65.589389
26.97876
0
0
3.141593
6.283185
4.814801
0
0
6.283185
-0.574452
-33.916784
0
-2.328123
1.623033
12.440045
2.546149
0
0
3.141593
6.283185
4.814801
0
0
6.283185
2.867784
-33.288585
0
-4.026556
2.071768
21.775704
5.915012
0
0
3.141593
6.283185
4.814801
0
0
6.283185
6.831214
-30.229523
0
-7.56635
2.302134
41.731874
14.658729
0
0
3.141593
6.283185
4.814801
0
0
6.283185
6.35981
-30.72436
0
-7.019448
2.311281
38.6103
13.183144
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.408789
-23.585203
0
-15.677939
0.962807
89.342746
40.782404
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.664616
-31.389572
0
-6.284216
2.300962
34.434624
11.266393
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.65411
-26.526278
0
-11.857833
1.832038
66.638077
27.558227
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.736011
-26.399903
0
-12.013411
1.803877
67.553564
28.066487
0
0
3.141593
6.283185
4.814801
0
0
6.283185
10.743771
-24.757527
0
-14.103368
1.363682
79.928912
35.147637
0
0
3.141593
6.283185
4.814801
0
0
6.283185
6.513529
-30.566886
0
-7.193298
2.309863
39.601184
13.647699
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.864406
-22.741391
0
-16.857038
0.627762
96.440058
45.163377
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.373278
-31.645475
0
-5.999482
2.289435
32.824162
10.545583
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.28507
-29.719689
0
-8.133118
2.278751
44.980236
16.23085
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.119876
-27.324416
0
-10.891283
1.991386
60.969151
24.461344
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.995467
-28.855856
0
-9.106673
2.208313
50.590591
19.029088
0
0
3.141593
6.283185
4.814801
0
0
6.283185
-0.377279
-33.931717
0
-2.402341
1.649644
12.8441
2.678248
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.649425
-29.286672
0
-8.618691
2.248203
47.773743
17.611368
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.095278
-29.936878
0
-7.891118
2.290401
43.591607
15.554338
0
0
3.141593
6.283185
4.814801
0
0
6.283185
10.377531
-25.373096
0
-13.304798
1.544974
75.183683
32.387101
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.288489
-29.715724
0
-8.137544
2.278515
45.005659
16.243297
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.419275
-29.562651
0
-8.308705
2.268791
45.989288
16.726528
0
0
3.141593
6.283185
4.814801
0
0
6.283185
8.099229
-28.722961
0
-9.258311
2.19412
51.467802
19.475709
0
0
3.141593
6.283185
4.814801
0
0
6.283185
7.254515
-29.755042
0
-8.093662
2.280816
44.753668
16.120023
0
0
3.141593
6.283185
4.814801
0
0
6.283185
5.581321
-31.464115
0
-6.201457
2.298064
33.966147
11.055621
0
0
3.141593
6.283185
4.814801
0
0
6.283185
11.087404
-24.160545
0
-14.896174
1.168778
84.659489
37.953442
0
0
3.141593
6.283185
4.814801
0
0
6.283185
6.824641
-30.236666
0
-7.558439
2.302363
41.686627
14.63709
0
0
3.141593
6.283185
4.814801
0
0
6.283185
9.475368
-26.798372
0
-11.525259
1.889944
64.683836
26.48076
End of preview.