Datasets:

Modalities:
Image
Formats:
parquet
Languages:
English
DOI:
Libraries:
Datasets
Dask
License:
jpodivin commited on
Commit
7fed69a
·
1 Parent(s): b1e50bc

Removing download script

Browse files

Signed-off-by: Jiri Podivin <[email protected]>

Files changed (1) hide show
  1. plantorgans.py +0 -168
plantorgans.py DELETED
@@ -1,168 +0,0 @@
1
- import datasets
2
- import pandas as pd
3
- import glob
4
- from pathlib import Path
5
- from PIL import Image, ImageOps
6
-
7
- _DESCRIPTION = """Photos of various plants with their major, above ground organs labeled. Includes labels for stem, leafs, fruits and flowers."""
8
-
9
- _HOMEPAGE = "https://huggingface.co/datasets/jpodivin/plantorgans"
10
-
11
- _CITATION = """"""
12
-
13
- _LICENSE = "MIT"
14
-
15
- _BASE_URL = "https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/"
16
- _TRAIN_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(0, 8)]
17
- _TEST_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(8, 12)]
18
- _MASKS_URLS = [_BASE_URL + f"masks.tar.0{i}" for i in range(0, 2)]
19
- _SEMANTIC_MASKS_URLS = "semantic_masks.tar.gz"
20
-
21
- _SEMANTIC_METADATA_URLS = {
22
- 'train': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_semantic_train.csv',
23
- 'test': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_semantic_test.csv'
24
- }
25
-
26
- _PANOPTIC_METADATA_URLS = {
27
- 'train': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_train.csv',
28
- 'test': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_test.csv'
29
- }
30
-
31
-
32
- class PlantOrgansConfig(datasets.BuilderConfig):
33
- """Builder Config for PlantOrgans"""
34
-
35
- def __init__(self, data_urls, metadata_urls, splits, **kwargs):
36
- """BuilderConfig for PlantOrgans.
37
- Args:
38
- data_urls: list of `string`s, urls to download the zip files from.
39
- metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
40
- **kwargs: keyword arguments forwarded to super.
41
- """
42
- super().__init__(version=datasets.Version("1.0.0"), **kwargs)
43
- self.data_urls = data_urls
44
- self.metadata_urls = metadata_urls
45
- self.splits = splits
46
-
47
-
48
- class PlantOrgans(datasets.GeneratorBasedBuilder):
49
- """Plantorgans dataset
50
- """
51
- BUILDER_CONFIGS = [
52
- PlantOrgansConfig(
53
- name="semantic_segmentation_full",
54
- description="This configuration contains segmentation masks.",
55
- data_urls=_BASE_URL,
56
- metadata_urls=_SEMANTIC_METADATA_URLS,
57
- splits=['train', 'test'],
58
- ),
59
- PlantOrgansConfig(
60
- name="instance_segmentation_full",
61
- description="This configuration contains segmentation masks.",
62
- data_urls=_BASE_URL,
63
- metadata_urls=_PANOPTIC_METADATA_URLS,
64
- splits=['train', 'test'],
65
- ),
66
- ]
67
-
68
- def _info(self):
69
- features=datasets.Features(
70
- {
71
- "image": datasets.Image(),
72
- "mask": datasets.Image(),
73
- "image_name": datasets.Value(dtype="string"),
74
- })
75
- return datasets.DatasetInfo(
76
- description=_DESCRIPTION,
77
- features=features,
78
- supervised_keys=("image", "mask"),
79
- homepage=_HOMEPAGE,
80
- citation=_CITATION,
81
- license=_LICENSE,
82
- )
83
-
84
-
85
- def _split_generators(self, dl_manager):
86
-
87
- train_archives_paths = dl_manager.download_and_extract(_TRAIN_URLS)
88
- test_archives_paths = dl_manager.download_and_extract(_TEST_URLS)
89
-
90
- train_paths = []
91
- test_paths = []
92
-
93
- for p in train_archives_paths:
94
- train_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
95
- for p in test_archives_paths:
96
- test_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
97
-
98
- if self.config.name == 'instance_segmentation_full':
99
- metadata_urls = _PANOPTIC_METADATA_URLS
100
- mask_urls = _MASKS_URLS
101
- mask_glob = '/masks/**.png'
102
- else:
103
- metadata_urls = _SEMANTIC_METADATA_URLS
104
- mask_urls = _SEMANTIC_MASKS_URLS
105
- mask_glob = '/semantic_masks/**.png'
106
-
107
- split_metadata_paths = dl_manager.download(metadata_urls)
108
-
109
- mask_archives_paths = dl_manager.download_and_extract(mask_urls)
110
-
111
- mask_paths = []
112
- for p in mask_archives_paths:
113
- mask_paths.extend(glob.glob(str(p)+mask_glob))
114
-
115
- return [
116
- datasets.SplitGenerator(
117
- name=datasets.Split.TRAIN,
118
- gen_kwargs={
119
- "images": train_paths,
120
- "metadata_path": split_metadata_paths["train"],
121
- "masks_path": mask_paths,
122
- },
123
- ),
124
- datasets.SplitGenerator(
125
- name=datasets.Split.TEST,
126
- gen_kwargs={
127
- "images": test_paths,
128
- "metadata_path": split_metadata_paths["test"],
129
- "masks_path": mask_paths,
130
- },
131
- ),
132
- ]
133
-
134
-
135
- def _generate_examples(self, images, metadata_path, masks_path):
136
- """
137
- images: path to image directory
138
- metadata_path: path to metadata csv
139
- masks_path: path to masks
140
- """
141
-
142
- # Get local image paths
143
- image_paths = pd.DataFrame(
144
- [(str(Path(*Path(e).parts[-3:])), e) for e in images], columns=['image', 'image_path'])
145
-
146
- # Get local mask paths
147
- masks_paths = pd.DataFrame(
148
- [(str(Path(*Path(e).parts[-2:])), e) for e in masks_path], columns=['mask', 'mask_path'])
149
-
150
- # Get all common about images and masks from csv
151
- metadata = pd.read_csv(metadata_path)
152
- metadata['image'] = metadata['image_path'].apply(lambda x: str(Path(x).parts[-1]))
153
- metadata['mask'] = metadata['mask_path'].apply(lambda x: str(Path(x).parts[-1]))
154
-
155
- # Merge dataframes
156
- metadata = metadata.merge(masks_paths, on='mask', how='inner')
157
- metadata = metadata.merge(image_paths, on='image', how='inner')
158
-
159
- # Make examples and yield
160
- for i, r in metadata.iterrows():
161
- # Example contains paths to mask, source image, certainty of label,
162
- # and name of source image.
163
- example = {
164
- 'mask': r['mask_path'],
165
- 'image': r['image_path'],
166
- 'image_name': Path(r['image_path']).parts[-1],
167
- }
168
- yield i, example