|
import datasets |
|
import os |
|
import json |
|
|
|
_DESCRIPTION = """Photos of various plants with their major, above ground organs labeled. Includes labels for stem, leafs, fruits and flowers.""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/jpodivin/plantorgans" |
|
|
|
_CITATION = """""" |
|
|
|
_LICENSE = "MIT" |
|
|
|
_NAMES = [ |
|
'Leaf', |
|
'Stem', |
|
'Flower', |
|
'Fruit', |
|
] |
|
|
|
_BASE_URL = "https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/" |
|
_TRAIN_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(0, 8)] |
|
_TEST_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(8, 12)] |
|
_METADATA_URLS = { |
|
'train': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/labels_train.csv', |
|
'test': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/labels_test.csv' |
|
} |
|
|
|
|
|
class PlantOrgansConfig(datasets.BuilderConfig): |
|
"""Builder Config for PlantOrgans""" |
|
|
|
def __init__(self, data_url, metadata_urls, splits, **kwargs): |
|
"""BuilderConfig for PlantOrgans. |
|
Args: |
|
data_url: `string`, url to download the zip file from. |
|
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.data_url = data_url |
|
self.metadata_urls = metadata_urls |
|
self.splits = splits |
|
|
|
|
|
class PlantOrgans(datasets.GeneratorBasedBuilder): |
|
"""Plantorgans dataset |
|
""" |
|
BUILDER_CONFIGS = [ |
|
PlantOrgansConfig( |
|
name="semantic_segmentation_full", |
|
description="This configuration contains segmentation masks.", |
|
data_url=_BASE_URL, |
|
metadata_urls=_METADATA_URLS, |
|
splits=['train', 'test'], |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"annotation": datasets.ClassLabel(names=_NAMES), |
|
} |
|
), |
|
supervised_keys=("image", "annotation"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
train_archive_path = dl_manager.download_and_extract(_TRAIN_URLS) |
|
test_archive_path = dl_manager.download_and_extract(_TEST_URLS) |
|
|
|
split_metadata_paths = dl_manager.download(_METADATA_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(os.path.join(train_archive_path, 'sourcedata/labeled')), |
|
"metadata_path": split_metadata_paths["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(os.path.join(test_archive_path, 'sourcedata/labeled')), |
|
"metadata_path": split_metadata_paths["test"], |
|
}, |
|
), |
|
] |
|
def _generate_examples(self, images, metadata_path): |
|
|
|
with open(metadata_path, 'w', encoding='utf-8') as fp: |
|
metadata = json.load(fp) |
|
images = metadata['image'] |
|
annotations = metadata['annotations'] |