Datasets:

Modalities:
Image
Formats:
parquet
Languages:
English
DOI:
Libraries:
Datasets
Dask
License:
File size: 7,516 Bytes
bdae278
 
ff4d367
7dc3adc
ff4d367
bdae278
 
 
 
 
 
 
 
 
 
 
 
 
ff4d367
 
bdae278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff4d367
bdae278
 
ff4d367
 
 
 
 
 
 
 
 
bdae278
 
 
ff4d367
 
 
 
 
bdae278
 
 
ff4d367
bdae278
 
 
 
 
ff4d367
bdae278
ff4d367
 
 
 
 
 
 
 
 
bdae278
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/bin/env python

# Mask conversion for plantorgans
# 2024 by Jiri Podivin and Miroslav Jaros

import numpy as np
import json
import os
import numpy as np
from PIL import Image
from multiprocessing import Pool, cpu_count
from urllib.parse import unquote
from datetime import datetime
import pandas as pd
import os
import tempfile
import argparse
import glob
import shutil
import tarfile

class InputStream:
    def __init__(self, data):
        self.data = data
        self.i = 0

    def read(self, size):
        out = self.data[self.i : self.i + size]
        self.i += size
        return int(out, 2)


def access_bit(data, num):
    """from bytes array to bits by num position"""
    base = int(num // 8)
    shift = 7 - int(num % 8)
    return (data[base] & (1 << shift)) >> shift


def bytes2bit(data):
    """get bit string from bytes data"""
    return ''.join([str(access_bit(data, i)) for i in range(len(data) * 8)])


def decode_rle(rle, print_params: bool = False):
    """from LS RLE to numpy uint8 3d image [width, height, channel]

    Args:
        print_params (bool, optional): If true, a RLE parameters print statement is suppressed
    """
    input = InputStream(bytes2bit(rle))
    num = input.read(32)
    word_size = input.read(5) + 1
    rle_sizes = [input.read(4) + 1 for _ in range(4)]

    if print_params:
        print(
            'RLE params:', num, 'values', word_size, 'word_size', rle_sizes, 'rle_sizes'
        )

    i = 0
    out = np.zeros(num, dtype=np.uint8)
    while i < num:
        x = input.read(1)
        j = i + 1 + input.read(rle_sizes[input.read(2)])
        if x:
            val = input.read(word_size)
            out[i:j] = val
            i = j
        else:
            while i < j:
                val = input.read(word_size)
                out[i] = val
                i += 1
    return out

def log(message):
    timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print(f"[{timestamp}] {message}")

def save_image(mask_image: Image.Image, save_path: str):
    mask_image.save(save_path, format='PNG')
    log(f'Saved mask: {save_path}')

def process_files_in_parallel(files_to_process, masks_save_directory, source_files):
    with Pool(processes=cpu_count()//2) as pool:
        results = pool.starmap(process_file, [(file, masks_save_directory, source_files) for file in files_to_process])
    
    return [e for r in results for e in r]


def process_file(file_path, masks_save_directory, source_files):
    log(f"Opening file: {file_path}")
    total_metadata = []
    try:
        with open(file_path, 'r') as file:
            data = json.load(file)
    except Exception as e:
        log(f'Error reading file {file_path}: {e}')
        return total_metadata
    
    image_name = data['task']['data']['image'].split('/')[-1]

    if image_name not in source_files:
        log(f"Requested file {image_name} does not exist in source data!")
        return total_metadata

    image_name_prefix = unquote(image_name.rsplit('.', 1)[0])
    log(f"Processing image: {image_name_prefix}")
    label_counts = {}

    for result in data['result']:
        if 'rle' not in result['value']:
            log(f"No 'rle' key found in result: {result.get('id', 'Unknown ID')}")
            continue
        
        rle_data = result['value']['rle']
        rle_bytes = bytes.fromhex(''.join(format(x, '02x') for x in rle_data))
        mask = decode_rle(rle_bytes)

        original_height = result['original_height']
        original_width = result['original_width']
        mask = mask.reshape((original_height, original_width, 4))

        alpha_channel = mask[:, :, 3]
        mask_image = np.zeros((original_height, original_width, 3), dtype=np.uint8)
        mask_image[alpha_channel == 255] = [255, 255, 255]

        if 'brushlabels' in result['value']:
            for label in result['value']['brushlabels']:

                label_counts[label] = label_counts.get(label, 0) + 1
                save_path = os.path.join(masks_save_directory, f"{image_name_prefix}-{label}-{label_counts[label]}.png")
                save_image(Image.fromarray(mask_image).convert('L'), save_path)
                metadata = {
                    "original_height": result['original_height'],
                    "original_width": result['original_width'],
                    "image": os.path.join('sourcedata/labeled/', os.path.basename(data['task']['data']['image'])),
                    "score": result['score'] if 'score' in result.keys() else 0,
                    "mask": save_path,
                    "class": label,
                }
                total_metadata.append(metadata)

    return total_metadata

def merge_file_masks(mask_info, target_mask_dir, label2id, img):
    final_mask = np.zeros(
        np.asarray(Image.open(mask_info['mask'].iloc[0])).shape, dtype=np.uint8)
    for i, r in mask_info.iterrows():
        mask = np.asarray(Image.open(r['mask']))
        final_mask = np.where(mask == 0, final_mask, label2id[r['class']])
    
    mask_path = os.path.join(target_mask_dir, f"{os.path.basename(img).split('.')[0]}_mask.png")
    Image.fromarray(final_mask).convert('L').save(mask_path, format='PNG')
    return {
        'mask': mask_path,
        'image': img,
        'original_height': r['original_height'],
        'original_width': r['original_width']
    }

def merge_masks(mask_metadata, target_mask_dir, label2id):
    new_metadata = []
    imgs = [
        (
            mask_metadata[mask_metadata['image'] == img],
            target_mask_dir,
            label2id,
            img
        ) for img in mask_metadata['image'].unique()]

    
    with Pool(processes=cpu_count()//2) as pool:
        new_metadata = pool.starmap(merge_file_masks, imgs)

    return new_metadata


def main():
    parser = argparse.ArgumentParser('maskconvert')
    parser.add_argument('dataset_root', help="Root directory of the dataset repo.")

    arguments = parser.parse_args()

    # Unzip raw labels to temporary location
    tmp_raw_label_pth = tempfile.mkdtemp('_labels_raw')
    with tarfile.open(os.path.join(arguments.dataset_root, 'labels_raw.tar.gz'), mode='r:gz') as archive:
        archive.extractall(tmp_raw_label_pth)

    annotations_folder_path = os.path.join(tmp_raw_label_pth, 'labels_raw')
    
    tmp_mask_path = tempfile.mkdtemp('_masks')
 
    files_to_process = glob.glob(f"{annotations_folder_path}/*")

    # Image name -> path dict
    images = {os.path.basename(x): x for x in glob.glob('sourcedata/**/*.jpg')}

    # Image names
    source_files = [k for k in images.keys()]

    metadata = pd.DataFrame(process_files_in_parallel(files_to_process, tmp_mask_path, source_files))

    # Label map order IS important
    id2label = {int(k): v for k, v in enumerate(['void', 'Fruit', 'Leaf', 'Flower', 'Stem'])}

    label2id = {v: k for k, v in id2label.items()}

    result = merge_masks(metadata, os.path.join(arguments.dataset_root, 'semantic_masks'), label2id)

    result = pd.DataFrame(result).drop_duplicates()
    
    # Moving newly labeled images to right dir
    images = {os.path.basename(x): x for x in glob.glob('sourcedata/**/*.jpg')}

    for img in metadata['image']:
        if 'unlabeled' in images[img]:
            print("Moving {img} to labeled!")
            shutil.move(images[img], os.path.join('sourcedata/labeled/', img))

    result.to_csv(
        os.path.join(arguments.dataset_root, 'semantic_metadata.csv'),
        index=False)


if __name__ == '__main__':
    main()