|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Multilingual Librispeech automatic speech recognition dataset.""" |
|
|
|
|
|
from functools import partial |
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import AutomaticSpeechRecognition |
|
from datasets.utils.streaming_download_manager import xopen |
|
|
|
|
|
_CITATION = """\ |
|
@article{Pratap2020MLSAL, |
|
title={MLS: A Large-Scale Multilingual Dataset for Speech Research}, |
|
author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert}, |
|
journal={ArXiv}, |
|
year={2020}, |
|
volume={abs/2012.03411} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This is a streamable version of the Multilingual LibriSpeech (MLS) dataset. |
|
The data archives were restructured from the original ones from [OpenSLR](http://www.openslr.org/94) |
|
to make it easier to stream. |
|
|
|
MLS dataset is a large multilingual corpus suitable for speech research. |
|
The dataset is derived from read audiobooks from LibriVox and consists of 8 languages: |
|
English, German, Dutch, Spanish, French, Italian, Portuguese, Polish. |
|
""" |
|
|
|
_URL = "http://www.openslr.org/94" |
|
_DL_URL_FORMAT = "data/mls_{name}" |
|
|
|
|
|
class MultilingualLibrispeechConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for MultilingualLibrispeech.""" |
|
|
|
def __init__(self, name, **kwargs): |
|
""" |
|
Args: |
|
name: `string`, name of dataset config (=language) |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(MultilingualLibrispeechConfig, self).__init__( |
|
version=datasets.Version("2.1.0", ""), name=name, **kwargs |
|
) |
|
|
|
self.data_root_dir = _DL_URL_FORMAT.format(name=name) |
|
|
|
|
|
class MultilingualLibrispeech(datasets.GeneratorBasedBuilder): |
|
"""Multilingual Librispeech dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
MultilingualLibrispeechConfig(name="german", description="German LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="dutch", description="Dutch LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="french", description="French LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="spanish", description="Spanish LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="italian", description="Italian LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="portuguese", description="Portuguese LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="polish", description="Polish LibriSpeech dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
"speaker_id": datasets.Value("int64"), |
|
"chapter_id": datasets.Value("int64"), |
|
"id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
download_transcript = partial( |
|
download_extract_transcript, dl_manager=dl_manager, root_dir=self.config.data_root_dir |
|
) |
|
download_audio = partial( |
|
download_audio_archives, dl_manager=dl_manager, root_dir=self.config.data_root_dir |
|
) |
|
download_limited_ids = partial( |
|
download_extract_limited_ids, dl_manager=dl_manager, root_dir=self.config.data_root_dir |
|
) |
|
|
|
train_kwargs = { |
|
"transcript_path": download_transcript(split="train"), |
|
"audio_archives": download_audio(split="train") |
|
} |
|
|
|
train_splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs=train_kwargs |
|
), |
|
datasets.SplitGenerator( |
|
name="train.9h", |
|
gen_kwargs={ |
|
**train_kwargs, |
|
"limited_ids_paths": download_limited_ids(sub_folder="limited_supervision/9hr"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="train.1h", |
|
gen_kwargs={ |
|
**train_kwargs, |
|
"limited_ids_paths": download_limited_ids(sub_folder="limited_supervision/1hr"), |
|
}, |
|
), |
|
] |
|
|
|
return train_splits + [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={ |
|
"transcript_path": download_transcript(split="dev"), |
|
"audio_archives": download_audio(split="dev"), |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={ |
|
"transcript_path": download_transcript(split="test"), |
|
"audio_archives": download_audio(split="test"), |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, transcript_path, audio_archives, limited_ids_paths=None): |
|
"""Generate examples from a Multilingual LibriSpeech data dir.""" |
|
transcripts = dict() |
|
with open(transcript_path, "r", encoding="utf-8") as file: |
|
for line in file: |
|
audio_id, transcript = line.strip().split("\t") |
|
transcripts[audio_id] = transcript |
|
|
|
limited_ids, limited_ids_archives_names = [], [] |
|
if limited_ids_paths: |
|
for path in limited_ids_paths: |
|
with open(path, "r", encoding="utf-8") as file: |
|
limited_ids.extend([line.strip() for line in file.readlines()]) |
|
|
|
limited_ids = set(limited_ids) |
|
|
|
for audio_archive in audio_archives: |
|
|
|
|
|
|
|
|
|
for audio_filename, file in audio_archive: |
|
speaker_id, chapter_id = audio_filename.split("_")[:2] |
|
speaker_id, chapter_id = int(speaker_id), int(chapter_id) |
|
audio_id = audio_filename.split(".flac")[0] |
|
audio_transcript = transcripts[audio_id] |
|
|
|
if limited_ids and audio_id not in limited_ids: |
|
|
|
continue |
|
|
|
yield audio_filename, { |
|
"file": audio_filename, |
|
"audio": {"path": audio_filename, "bytes": file.read()}, |
|
"text": audio_transcript, |
|
"speaker_id": speaker_id, |
|
"chapter_id": chapter_id, |
|
"id": audio_id |
|
} |
|
|
|
|
|
def download_extract_limited_ids(dl_manager, root_dir, sub_folder): |
|
"""Download and extract all handles.txt files containing ids for limited supervision train sets. """ |
|
|
|
sub_path = os.path.join(root_dir, "train", sub_folder) |
|
|
|
if sub_folder.endswith("9hr"): |
|
limited_ids_paths = [os.path.join(sub_path, "handles.txt")] |
|
else: |
|
|
|
|
|
limited_ids_paths = [os.path.join(sub_path, str(i), "handles.txt") for i in range(6)] |
|
|
|
limited_ids_paths = dl_manager.download_and_extract(limited_ids_paths) |
|
|
|
return limited_ids_paths |
|
|
|
|
|
def download_extract_transcript(dl_manager, root_dir, split): |
|
"""Downloading and extracting file with audio transcriptions. """ |
|
transcript_path = os.path.join(root_dir, split, "transcripts.txt") |
|
return dl_manager.download_and_extract(transcript_path) |
|
|
|
|
|
def download_audio_archives(dl_manager, root_dir, split): |
|
"""Prepare archives with audio files for iterating over them. |
|
|
|
Return: |
|
audio_archives (List `Generator`): list of generators to iterate over files in each audio archive. |
|
""" |
|
|
|
|
|
|
|
split_dir = os.path.join(root_dir, split) |
|
audio_filenames_path = dl_manager.download(os.path.join(split_dir, "audio_filenames.txt")) |
|
|
|
with xopen(audio_filenames_path, "r", encoding="utf-8") as file: |
|
audio_filenames = [line.strip() for line in file.readlines()] |
|
|
|
archive_paths = dl_manager.download([os.path.join(split_dir, "audio", filename) for filename in audio_filenames]) |
|
audio_archives = [dl_manager.iter_archive(archive_path) for archive_path in archive_paths] |
|
|
|
return audio_archives |