File size: 18,106 Bytes
7155eaf b710cca 7155eaf 2e83e61 b710cca 7155eaf 2e83e61 7155eaf d22a730 7155eaf d22a730 7155eaf 2e83e61 7155eaf 2e83e61 7155eaf d22a730 7155eaf 2e83e61 7155eaf 2e83e61 7155eaf 2e83e61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- de
- nl
- fr
- it
- es
- pt
- pl
- en
license:
- cc-by-4.0
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- automatic-speech-recognition
- text-to-speech
- text-to-audio
paperswithcode_id: multilingual-librispeech
pretty_name: MultiLingual LibriSpeech
dataset_info:
- config_name: dutch
features:
- name: audio
dtype: audio
- name: original_path
dtype: string
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: transcript
dtype: string
- name: audio_duration
dtype: float64
- name: speaker_id
dtype: string
- name: chapter_id
dtype: string
- name: file
dtype: string
- name: id
dtype: string
splits:
- name: dev
num_bytes: 199959986
num_examples: 3095
- name: test
num_bytes: 199298575
num_examples: 3075
- name: train
num_bytes: 23931679031
num_examples: 374287
- name: 9_hours
num_bytes: 139884664.668
num_examples: 2153
- name: 1_hours
num_bytes: 15462181
num_examples: 234
download_size: 24376256629
dataset_size: 24486284437.668
- config_name: french
features:
- name: audio
dtype: audio
- name: original_path
dtype: string
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: transcript
dtype: string
- name: audio_duration
dtype: float64
- name: speaker_id
dtype: string
- name: chapter_id
dtype: string
- name: file
dtype: string
- name: id
dtype: string
splits:
- name: dev
num_bytes: 157923970.696
num_examples: 2416
- name: test
num_bytes: 158352158.582
num_examples: 2426
- name: train
num_bytes: 16984935842.04
num_examples: 258213
- name: 9_hours
num_bytes: 142796680.609
num_examples: 2167
- name: 1_hours
num_bytes: 15675831
num_examples: 241
download_size: 17381581776
dataset_size: 17459684482.927002
- config_name: german
features:
- name: audio
dtype: audio
- name: original_path
dtype: string
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: transcript
dtype: string
- name: audio_duration
dtype: float64
- name: speaker_id
dtype: string
- name: chapter_id
dtype: string
- name: file
dtype: string
- name: id
dtype: string
splits:
- name: dev
num_bytes: 224293581.302
num_examples: 3469
- name: test
num_bytes: 225756069.096
num_examples: 3394
- name: train
num_bytes: 31050881388
num_examples: 469942
- name: 9_hours
num_bytes: 142777983.118
num_examples: 2194
- name: 1_hours
num_bytes: 15714704
num_examples: 241
download_size: 31526161821
dataset_size: 31659423725.516
- config_name: italian
features:
- name: audio
dtype: audio
- name: original_path
dtype: string
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: transcript
dtype: string
- name: audio_duration
dtype: float64
- name: speaker_id
dtype: string
- name: chapter_id
dtype: string
- name: file
dtype: string
- name: id
dtype: string
splits:
- name: dev
num_bytes: 81607596.048
num_examples: 1248
- name: test
num_bytes: 83216752.046
num_examples: 1262
- name: train
num_bytes: 3896742625
num_examples: 59623
- name: 9_hours
num_bytes: 141671904.428
num_examples: 2173
- name: 1_hours
num_bytes: 15560398
num_examples: 240
download_size: 4200633596
dataset_size: 4218799275.522
- config_name: polish
features:
- name: audio
dtype: audio
- name: original_path
dtype: string
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: transcript
dtype: string
- name: audio_duration
dtype: float64
- name: speaker_id
dtype: string
- name: chapter_id
dtype: string
- name: file
dtype: string
- name: id
dtype: string
splits:
- name: dev
num_bytes: 32746725
num_examples: 512
- name: test
num_bytes: 33735044
num_examples: 520
- name: train
num_bytes: 1638889846
num_examples: 25043
- name: 9_hours
num_bytes: 142005461
num_examples: 2173
- name: 1_hours
num_bytes: 15681216
num_examples: 238
download_size: 1855342312
dataset_size: 1863058292
- config_name: portuguese
features:
- name: audio
dtype: audio
- name: original_path
dtype: string
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: transcript
dtype: string
- name: audio_duration
dtype: float64
- name: speaker_id
dtype: string
- name: chapter_id
dtype: string
- name: file
dtype: string
- name: id
dtype: string
splits:
- name: dev
num_bytes: 57533473
num_examples: 826
- name: test
num_bytes: 59141979
num_examples: 871
- name: train
num_bytes: 2518553713.946
num_examples: 37533
- name: 9_hours
num_bytes: 141641902.42
num_examples: 2116
- name: 1_hours
num_bytes: 15697139
num_examples: 236
download_size: 2780836500
dataset_size: 2792568207.366
- config_name: spanish
features:
- name: audio
dtype: audio
- name: original_path
dtype: string
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: transcript
dtype: string
- name: audio_duration
dtype: float64
- name: speaker_id
dtype: string
- name: chapter_id
dtype: string
- name: file
dtype: string
- name: id
dtype: string
splits:
- name: dev
num_bytes: 157804903.144
num_examples: 2408
- name: test
num_bytes: 158526899.32
num_examples: 2385
- name: train
num_bytes: 14562584188
num_examples: 220701
- name: 9_hours
num_bytes: 142473624.48
num_examples: 2110
- name: 1_hours
num_bytes: 15702048
num_examples: 233
download_size: 14971394533
dataset_size: 15037091662.944
configs:
- config_name: dutch
data_files:
- split: dev
path: dutch/dev-*
- split: test
path: dutch/test-*
- split: train
path: dutch/train-*
- split: 9_hours
path: dutch/9_hours-*
- split: 1_hours
path: dutch/1_hours-*
- config_name: french
data_files:
- split: dev
path: french/dev-*
- split: test
path: french/test-*
- split: train
path: french/train-*
- split: 9_hours
path: french/9_hours-*
- split: 1_hours
path: french/1_hours-*
- config_name: german
data_files:
- split: dev
path: german/dev-*
- split: test
path: german/test-*
- split: train
path: german/train-*
- split: 9_hours
path: german/9_hours-*
- split: 1_hours
path: german/1_hours-*
- config_name: italian
data_files:
- split: dev
path: italian/dev-*
- split: test
path: italian/test-*
- split: train
path: italian/train-*
- split: 9_hours
path: italian/9_hours-*
- split: 1_hours
path: italian/1_hours-*
- config_name: polish
data_files:
- split: dev
path: polish/dev-*
- split: test
path: polish/test-*
- split: train
path: polish/train-*
- split: 9_hours
path: polish/9_hours-*
- split: 1_hours
path: polish/1_hours-*
- config_name: portuguese
data_files:
- split: dev
path: portuguese/dev-*
- split: test
path: portuguese/test-*
- split: train
path: portuguese/train-*
- split: 9_hours
path: portuguese/9_hours-*
- split: 1_hours
path: portuguese/1_hours-*
- config_name: spanish
data_files:
- split: dev
path: spanish/dev-*
- split: test
path: spanish/test-*
- split: train
path: spanish/train-*
- split: 9_hours
path: spanish/9_hours-*
- split: 1_hours
path: spanish/1_hours-*
---
# Dataset Card for MultiLingual LibriSpeech
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [How to use](#how-to-use)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [MultiLingual LibriSpeech ASR corpus](http://www.openslr.org/94)
- **Repository:** [Needs More Information]
- **Paper:** [MLS: A Large-Scale Multilingual Dataset for Speech Research](https://arxiv.org/abs/2012.03411)
- **Leaderboard:** [🤗 Autoevaluate Leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards?dataset=facebook%2Fmultilingual_librispeech&only_verified=0&task=automatic-speech-recognition&config=-unspecified-&split=-unspecified-&metric=wer)
### Dataset Summary
This is a streamable version of the Multilingual LibriSpeech (MLS) dataset.
The data archives were restructured from the original ones from [OpenSLR](http://www.openslr.org/94) to make it easier to stream.
MLS dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of
8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish. It includes about 44.5K hours of English and a total of about 6K hours for other languages.
### Supported Tasks and Leaderboards
- `automatic-speech-recognition`, `speaker-identification`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/dataset/multilingual-librispeech and ranks models based on their WER.
- `text-to-speech`, `text-to-audio`: The dataset can also be used to train a model for Text-To-Speech (TTS).
### Languages
The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish
### How to use
The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function.
For example, to download the German config, simply specify the corresponding language config name (i.e., "german" for German):
```python
from datasets import load_dataset
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train")
```
Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
```python
from datasets import load_dataset
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train", streaming=True)
print(next(iter(mls)))
```
*Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).
Local:
```python
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train")
batch_sampler = BatchSampler(RandomSampler(mls), batch_size=32, drop_last=False)
dataloader = DataLoader(mls, batch_sampler=batch_sampler)
```
Streaming:
```python
from datasets import load_dataset
from torch.utils.data import DataLoader
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train", streaming=True)
dataloader = DataLoader(mls, batch_size=32)
```
To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).
### Example scripts
Train your own CTC or Seq2Seq Automatic Speech Recognition models on MultiLingual Librispeech with `transformers` - [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition).
## Dataset Structure
### Data Instances
A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided.
```
{'file': '10900_6473_000030.flac',
'audio': {'path': '10900_6473_000030.flac',
'array': array([-1.52587891e-04, 6.10351562e-05, 0.00000000e+00, ...,
4.27246094e-04, 5.49316406e-04, 4.57763672e-04]),
'sampling_rate': 16000},
'text': 'więc czego chcecie odemnie spytałem wysłuchawszy tego zadziwiającego opowiadania broń nas stary człowieku broń zakrzyknęli równocześnie obaj posłowie\n',
'speaker_id': 10900,
'chapter_id': 6473,
'id': '10900_6473_000030'}
```
### Data Fields
- file: A filename .flac format.
- audio: A dictionary containing the audio filename, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
- text: the transcription of the audio file.
- id: unique id of the data sample.
- speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples.
- chapter_id: id of the audiobook chapter which includes the transcription.
### Data Splits
| Number of samples | Train | Train.9h | Train.1h | Dev | Test |
| ----- | ------ | ----- | ---- | ---- | ---- |
| german | 469942 | 2194 | 241 | 3469 | 3394 |
| dutch | 374287 | 2153 | 234 | 3095 | 3075 |
| french | 258213 | 2167 | 241 | 2416 | 2426 |
| spanish | 220701 | 2110 | 233 | 2408 | 2385 |
| italian | 59623 | 2173 | 240 | 1248 | 1262 |
| portuguese | 37533 | 2116 | 236 | 826 | 871 |
| polish | 25043 | 2173 | 238 | 512 | 520 |
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
Public Domain, Creative Commons Attribution 4.0 International Public License ([CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode))
### Citation Information
```
@article{Pratap2020MLSAL,
title={MLS: A Large-Scale Multilingual Dataset for Speech Research},
author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},
journal={ArXiv},
year={2020},
volume={abs/2012.03411}
}
```
### Data Statistics
| Duration (h) | Train | Dev | Test |
|--------------|-----------|-------|-------|
| English | 44,659.74 | 15.75 | 15.55 |
| German | 1,966.51 | 14.28 | 14.29 |
| Dutch | 1,554.24 | 12.76 | 12.76 |
| French | 1,076.58 | 10.07 | 10.07 |
| Spanish | 917.68 | 9.99 | 10 |
| Italian | 247.38 | 5.18 | 5.27 |
| Portuguese | 160.96 | 3.64 | 3.74 |
| Polish | 103.65 | 2.08 | 2.14 |
| # Speakers | Train | | Dev | | Test | |
|------------|-------|------|-----|----|------|----|
| Gender | M | F | M | F | M | F |
| English | 2742 | 2748 | 21 | 21 | 21 | 21 |
| German | 81 | 95 | 15 | 15 | 15 | 15 |
| Dutch | 9 | 31 | 3 | 3 | 3 | 3 |
| French | 62 | 80 | 9 | 9 | 9 | 9 |
| Spanish | 36 | 50 | 10 | 10 | 10 | 10 |
| Italian | 22 | 43 | 5 | 5 | 5 | 5 |
| Portuguese | 26 | 16 | 5 | 5 | 5 | 5 |
| Polish | 6 | 5 | 2 | 2 | 2 | 2 |
| # Hours / Gender | Dev | | Test | |
|------------------|------|------|------|------|
| Gender | M | F | M | F |
| English | 7.76 | 7.99 | 7.62 | 7.93 |
| German | 7.06 | 7.22 | 7 | 7.29 |
| Dutch | 6.44 | 6.32 | 6.72 | 6.04 |
| French | 5.13 | 4.94 | 5.04 | 5.02 |
| Spanish | 4.91 | 5.08 | 4.78 | 5.23 |
| Italian | 2.5 | 2.68 | 2.38 | 2.9 |
| Portuguese | 1.84 | 1.81 | 1.83 | 1.9 |
| Polish | 1.12 | 0.95 | 1.09 | 1.05 |
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) and [@polinaeterna](https://github.com/polinaeterna) for adding this dataset. |