evanfrick commited on
Commit
5c07e1a
·
1 Parent(s): d978a55

converted to parquet

Browse files
data/{lichess_game_data.txt → lichess_data.parquet} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fbb174f8789c9e7c4eae50f6a2bf19a3757aa13788182a3cd8c61acb039d2e97
3
- size 2249268189
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:760d01d1f01afd4f2208783c8d16612a668bf8ba7cbb594d71dc1d1a0a8fc126
3
+ size 1402139955
extra/chess_game_data.txt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b1f596fca8a3177bc5832e7a0f1e78fd14c3a924c53c3a15f4944a5d7ad869d1
3
- size 168853001
 
 
 
 
extra/fix.ipynb ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import pandas as pd\n",
10
+ "import json\n",
11
+ "import jsonlines\n"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": null,
17
+ "metadata": {},
18
+ "outputs": [],
19
+ "source": [
20
+ "\n",
21
+ "with jsonlines.open('lichess_data.jsonl', 'a') as writer:\n",
22
+ " with open(\"lichess_game_data.txt\", 'r') as readf:\n",
23
+ " line = readf.readline()\n",
24
+ " count = 0\n",
25
+ " while line:\n",
26
+ " data_line = {'id': count, 'pgn': line}\n",
27
+ " writer.write(data_line)\n",
28
+ " line = readf.readline()\n",
29
+ " count += 1"
30
+ ]
31
+ }
32
+ ],
33
+ "metadata": {
34
+ "kernelspec": {
35
+ "display_name": "chess",
36
+ "language": "python",
37
+ "name": "python3"
38
+ },
39
+ "language_info": {
40
+ "codemirror_mode": {
41
+ "name": "ipython",
42
+ "version": 3
43
+ },
44
+ "file_extension": ".py",
45
+ "mimetype": "text/x-python",
46
+ "name": "python",
47
+ "nbconvert_exporter": "python",
48
+ "pygments_lexer": "ipython3",
49
+ "version": "3.11.5"
50
+ }
51
+ },
52
+ "nbformat": 4,
53
+ "nbformat_minor": 2
54
+ }
extra/test_dataset.ipynb DELETED
@@ -1,682 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "metadata": {},
7
- "outputs": [
8
- {
9
- "name": "stderr",
10
- "output_type": "stream",
11
- "text": [
12
- "s:\\packages\\envs\\chess\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
13
- " from .autonotebook import tqdm as notebook_tqdm\n"
14
- ]
15
- }
16
- ],
17
- "source": [
18
- "from datasets import load_dataset\n",
19
- "import tokenize\n",
20
- "from tokenizers import SentencePieceBPETokenizer, pre_tokenizers, ByteLevelBPETokenizer, normalizers\n",
21
- "from transformers import AutoTokenizer"
22
- ]
23
- },
24
- {
25
- "cell_type": "code",
26
- "execution_count": 132,
27
- "metadata": {},
28
- "outputs": [
29
- {
30
- "name": "stderr",
31
- "output_type": "stream",
32
- "text": [
33
- "Downloading data files: 100%|██████████| 1/1 [00:00<?, ?it/s]\n",
34
- "Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 111.41it/s]\n",
35
- "Generating train split: 4343360 examples [00:24, 178753.60 examples/s]\n"
36
- ]
37
- }
38
- ],
39
- "source": [
40
- "datasets = load_dataset(\"text\", data_files={\"train\": \"lichess_game_data.txt\"})"
41
- ]
42
- },
43
- {
44
- "cell_type": "code",
45
- "execution_count": 133,
46
- "metadata": {},
47
- "outputs": [],
48
- "source": [
49
- "def get_training_corpus():\n",
50
- " dataset = datasets[\"train\"]\n",
51
- " for start_idx in range(0, len(dataset), 1000):\n",
52
- " samples = dataset[start_idx : start_idx + 1000]\n",
53
- " yield samples['text']"
54
- ]
55
- },
56
- {
57
- "cell_type": "code",
58
- "execution_count": 134,
59
- "metadata": {},
60
- "outputs": [],
61
- "source": [
62
- "tokenizer = SentencePieceBPETokenizer()"
63
- ]
64
- },
65
- {
66
- "cell_type": "code",
67
- "execution_count": 135,
68
- "metadata": {},
69
- "outputs": [],
70
- "source": [
71
- "tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(\".\", \"\"), normalizers.Replace(\"1-0\", \"\"), normalizers.Replace(\"0-1\", \"\"), normalizers.Replace(\"1/2-1/2\", \"\")])"
72
- ]
73
- },
74
- {
75
- "cell_type": "code",
76
- "execution_count": 136,
77
- "metadata": {},
78
- "outputs": [],
79
- "source": [
80
- "tokenizer.pre_tokenizer = pre_tokenizers.Split(\" \", 'removed')"
81
- ]
82
- },
83
- {
84
- "cell_type": "code",
85
- "execution_count": 137,
86
- "metadata": {},
87
- "outputs": [],
88
- "source": [
89
- "tokenizer.train_from_iterator(get_training_corpus(), vocab_size=10000000, min_frequency=0, show_progress=True, special_tokens=[\"<s>\", \"<pad>\", \"</s>\", \"<unk>\", \"<cls>\", \"<sep>\", \"<mask>\"])"
90
- ]
91
- },
92
- {
93
- "cell_type": "code",
94
- "execution_count": 138,
95
- "metadata": {},
96
- "outputs": [],
97
- "source": [
98
- "test_str = '1. e4 e5 2. Nf3 Nc6 3. d4 exd4 4. Nxd4 Nf6 5. Nxc6 bxc6 6. Bd3 d5 7. exd5 cxd5 8. O-O Be7 9. c4 O-O 10. cxd5 Bb7 11. Nc3 Nxd5 12. Bd2 Nb4 13. Be4 Bxe4 14. Nxe4 c5 15. Bc3 Qxd1 16. Rfxd1 Rad8 17. a3 Nd5 18. Ba5 Nb6 19. Nc3 Bf6 20. Rac1 Bxc3 21. Bxc3 Rxd1+ 22. Rxd1 f6 23. Kf1 Kf7 24. Rc1 Rd8 25. Ke2 Ke6 26. Bd2 c4 27. Be3 Rb8 28. Rc2 Rb7 29. h3 Kd5 30. Rd2+ Ke6 31. Rd4 a5 32. g3 Nd5 33. Bc1 Nb6 34. h4 g6 35. Bd2 Nd5 36. Bc1 Nb6 37. Bd2 Nd5 38. Rxc4 Rxb2 39. Ke1 Nb6 40. Re4+ Kd5 41. Re7 Rb1+ 42. Ke2 Nc4 43. Bc3 f5 44. Rd7+ Ke6 45. Rxh7 Rb3 46. Bd4 Rxa3 47. Rc7 Ra2+ 48. Kf3 Kd5 49. Rd7+ Kc6 50. Rg7 Kd5 51. Rd7+ Kc6 52. Rg7 Kd5 53. Rd7+ 1/2-1/2'"
99
- ]
100
- },
101
- {
102
- "cell_type": "code",
103
- "execution_count": 139,
104
- "metadata": {},
105
- "outputs": [
106
- {
107
- "data": {
108
- "text/plain": [
109
- "[('1', (0, 1)),\n",
110
- " ('e4', (2, 4)),\n",
111
- " ('e5', (5, 7)),\n",
112
- " ('2', (8, 9)),\n",
113
- " ('Nf3', (10, 13)),\n",
114
- " ('Nc6', (14, 17)),\n",
115
- " ('3', (18, 19)),\n",
116
- " ('d4', (20, 22)),\n",
117
- " ('exd4', (23, 27)),\n",
118
- " ('4', (28, 29)),\n",
119
- " ('Nxd4', (30, 34)),\n",
120
- " ('Nf6', (35, 38)),\n",
121
- " ('5', (39, 40)),\n",
122
- " ('Nxc6', (41, 45)),\n",
123
- " ('bxc6', (46, 50)),\n",
124
- " ('6', (51, 52)),\n",
125
- " ('Bd3', (53, 56)),\n",
126
- " ('d5', (57, 59)),\n",
127
- " ('7', (60, 61)),\n",
128
- " ('exd5', (62, 66)),\n",
129
- " ('cxd5', (67, 71)),\n",
130
- " ('8', (72, 73)),\n",
131
- " ('O-O', (74, 77)),\n",
132
- " ('Be7', (78, 81)),\n",
133
- " ('9', (82, 83)),\n",
134
- " ('c4', (84, 86)),\n",
135
- " ('O-O', (87, 90)),\n",
136
- " ('10', (91, 93)),\n",
137
- " ('cxd5', (94, 98)),\n",
138
- " ('Bb7', (99, 102)),\n",
139
- " ('11', (103, 105)),\n",
140
- " ('Nc3', (106, 109)),\n",
141
- " ('Nxd5', (110, 114)),\n",
142
- " ('12', (115, 117)),\n",
143
- " ('Bd2', (118, 121)),\n",
144
- " ('Nb4', (122, 125)),\n",
145
- " ('13', (126, 128)),\n",
146
- " ('Be4', (129, 132)),\n",
147
- " ('Bxe4', (133, 137)),\n",
148
- " ('14', (138, 140)),\n",
149
- " ('Nxe4', (141, 145)),\n",
150
- " ('c5', (146, 148)),\n",
151
- " ('15', (149, 151)),\n",
152
- " ('Bc3', (152, 155)),\n",
153
- " ('Qxd1', (156, 160)),\n",
154
- " ('16', (161, 163)),\n",
155
- " ('Rfxd1', (164, 169)),\n",
156
- " ('Rad8', (170, 174)),\n",
157
- " ('17', (175, 177)),\n",
158
- " ('a3', (178, 180)),\n",
159
- " ('Nd5', (181, 184)),\n",
160
- " ('18', (185, 187)),\n",
161
- " ('Ba5', (188, 191)),\n",
162
- " ('Nb6', (192, 195)),\n",
163
- " ('19', (196, 198)),\n",
164
- " ('Nc3', (199, 202)),\n",
165
- " ('Bf6', (203, 206)),\n",
166
- " ('20', (207, 209)),\n",
167
- " ('Rac1', (210, 214)),\n",
168
- " ('Bxc3', (215, 219)),\n",
169
- " ('21', (220, 222)),\n",
170
- " ('Bxc3', (223, 227)),\n",
171
- " ('Rxd1+', (228, 233)),\n",
172
- " ('22', (234, 236)),\n",
173
- " ('Rxd1', (237, 241)),\n",
174
- " ('f6', (242, 244)),\n",
175
- " ('23', (245, 247)),\n",
176
- " ('Kf1', (248, 251)),\n",
177
- " ('Kf7', (252, 255)),\n",
178
- " ('24', (256, 258)),\n",
179
- " ('Rc1', (259, 262)),\n",
180
- " ('Rd8', (263, 266)),\n",
181
- " ('25', (267, 269)),\n",
182
- " ('Ke2', (270, 273)),\n",
183
- " ('Ke6', (274, 277)),\n",
184
- " ('26', (278, 280)),\n",
185
- " ('Bd2', (281, 284)),\n",
186
- " ('c4', (285, 287)),\n",
187
- " ('27', (288, 290)),\n",
188
- " ('Be3', (291, 294)),\n",
189
- " ('Rb8', (295, 298)),\n",
190
- " ('28', (299, 301)),\n",
191
- " ('Rc2', (302, 305)),\n",
192
- " ('Rb7', (306, 309)),\n",
193
- " ('29', (310, 312)),\n",
194
- " ('h3', (313, 315)),\n",
195
- " ('Kd5', (316, 319)),\n",
196
- " ('30', (320, 322)),\n",
197
- " ('Rd2+', (323, 327)),\n",
198
- " ('Ke6', (328, 331)),\n",
199
- " ('31', (332, 334)),\n",
200
- " ('Rd4', (335, 338)),\n",
201
- " ('a5', (339, 341)),\n",
202
- " ('32', (342, 344)),\n",
203
- " ('g3', (345, 347)),\n",
204
- " ('Nd5', (348, 351)),\n",
205
- " ('33', (352, 354)),\n",
206
- " ('Bc1', (355, 358)),\n",
207
- " ('Nb6', (359, 362)),\n",
208
- " ('34', (363, 365)),\n",
209
- " ('h4', (366, 368)),\n",
210
- " ('g6', (369, 371)),\n",
211
- " ('35', (372, 374)),\n",
212
- " ('Bd2', (375, 378)),\n",
213
- " ('Nd5', (379, 382)),\n",
214
- " ('36', (383, 385)),\n",
215
- " ('Bc1', (386, 389)),\n",
216
- " ('Nb6', (390, 393)),\n",
217
- " ('37', (394, 396)),\n",
218
- " ('Bd2', (397, 400)),\n",
219
- " ('Nd5', (401, 404)),\n",
220
- " ('38', (405, 407)),\n",
221
- " ('Rxc4', (408, 412)),\n",
222
- " ('Rxb2', (413, 417)),\n",
223
- " ('39', (418, 420)),\n",
224
- " ('Ke1', (421, 424)),\n",
225
- " ('Nb6', (425, 428)),\n",
226
- " ('40', (429, 431)),\n",
227
- " ('Re4+', (432, 436)),\n",
228
- " ('Kd5', (437, 440)),\n",
229
- " ('41', (441, 443)),\n",
230
- " ('Re7', (444, 447)),\n",
231
- " ('Rb1+', (448, 452)),\n",
232
- " ('42', (453, 455)),\n",
233
- " ('Ke2', (456, 459)),\n",
234
- " ('Nc4', (460, 463)),\n",
235
- " ('43', (464, 466)),\n",
236
- " ('Bc3', (467, 470)),\n",
237
- " ('f5', (471, 473)),\n",
238
- " ('44', (474, 476)),\n",
239
- " ('Rd7+', (477, 481)),\n",
240
- " ('Ke6', (482, 485)),\n",
241
- " ('45', (486, 488)),\n",
242
- " ('Rxh7', (489, 493)),\n",
243
- " ('Rb3', (494, 497)),\n",
244
- " ('46', (498, 500)),\n",
245
- " ('Bd4', (501, 504)),\n",
246
- " ('Rxa3', (505, 509)),\n",
247
- " ('47', (510, 512)),\n",
248
- " ('Rc7', (513, 516)),\n",
249
- " ('Ra2+', (517, 521)),\n",
250
- " ('48', (522, 524)),\n",
251
- " ('Kf3', (525, 528)),\n",
252
- " ('Kd5', (529, 532)),\n",
253
- " ('49', (533, 535)),\n",
254
- " ('Rd7+', (536, 540)),\n",
255
- " ('Kc6', (541, 544)),\n",
256
- " ('50', (545, 547)),\n",
257
- " ('Rg7', (548, 551)),\n",
258
- " ('Kd5', (552, 555)),\n",
259
- " ('51', (556, 558)),\n",
260
- " ('Rd7+', (559, 563)),\n",
261
- " ('Kc6', (564, 567)),\n",
262
- " ('52', (568, 570)),\n",
263
- " ('Rg7', (571, 574)),\n",
264
- " ('Kd5', (575, 578)),\n",
265
- " ('53', (579, 581)),\n",
266
- " ('Rd7+', (582, 586))]"
267
- ]
268
- },
269
- "execution_count": 139,
270
- "metadata": {},
271
- "output_type": "execute_result"
272
- }
273
- ],
274
- "source": [
275
- "tokenizer.pre_tokenizer.pre_tokenize_str(tokenizer.normalizer.normalize_str(test_str))"
276
- ]
277
- },
278
- {
279
- "cell_type": "code",
280
- "execution_count": 140,
281
- "metadata": {},
282
- "outputs": [
283
- {
284
- "data": {
285
- "text/plain": [
286
- "['1',\n",
287
- " 'e4',\n",
288
- " 'e5',\n",
289
- " '2',\n",
290
- " 'Nf3',\n",
291
- " 'Nc6',\n",
292
- " '3',\n",
293
- " 'd4',\n",
294
- " 'exd4',\n",
295
- " '4',\n",
296
- " 'Nxd4',\n",
297
- " 'Nf6',\n",
298
- " '5',\n",
299
- " 'Nxc6',\n",
300
- " 'bxc6',\n",
301
- " '6',\n",
302
- " 'Bd3',\n",
303
- " 'd5',\n",
304
- " '7',\n",
305
- " 'exd5',\n",
306
- " 'cxd5',\n",
307
- " '8',\n",
308
- " 'O-O',\n",
309
- " 'Be7',\n",
310
- " '9',\n",
311
- " 'c4',\n",
312
- " 'O-O',\n",
313
- " '10',\n",
314
- " 'cxd5',\n",
315
- " 'Bb7',\n",
316
- " '11',\n",
317
- " 'Nc3',\n",
318
- " 'Nxd5',\n",
319
- " '12',\n",
320
- " 'Bd2',\n",
321
- " 'Nb4',\n",
322
- " '13',\n",
323
- " 'Be4',\n",
324
- " 'Bxe4',\n",
325
- " '14',\n",
326
- " 'Nxe4',\n",
327
- " 'c5',\n",
328
- " '15',\n",
329
- " 'Bc3',\n",
330
- " 'Qxd1',\n",
331
- " '16',\n",
332
- " 'Rfxd1',\n",
333
- " 'Rad8',\n",
334
- " '17',\n",
335
- " 'a3',\n",
336
- " 'Nd5',\n",
337
- " '18',\n",
338
- " 'Ba5',\n",
339
- " 'Nb6',\n",
340
- " '19',\n",
341
- " 'Nc3',\n",
342
- " 'Bf6',\n",
343
- " '20',\n",
344
- " 'Rac1',\n",
345
- " 'Bxc3',\n",
346
- " '21',\n",
347
- " 'Bxc3',\n",
348
- " 'Rxd1+',\n",
349
- " '22',\n",
350
- " 'Rxd1',\n",
351
- " 'f6',\n",
352
- " '23',\n",
353
- " 'Kf1',\n",
354
- " 'Kf7',\n",
355
- " '24',\n",
356
- " 'Rc1',\n",
357
- " 'Rd8',\n",
358
- " '25',\n",
359
- " 'Ke2',\n",
360
- " 'Ke6',\n",
361
- " '26',\n",
362
- " 'Bd2',\n",
363
- " 'c4',\n",
364
- " '27',\n",
365
- " 'Be3',\n",
366
- " 'Rb8',\n",
367
- " '28',\n",
368
- " 'Rc2',\n",
369
- " 'Rb7',\n",
370
- " '29',\n",
371
- " 'h3',\n",
372
- " 'Kd5',\n",
373
- " '30',\n",
374
- " 'Rd2+',\n",
375
- " 'Ke6',\n",
376
- " '31',\n",
377
- " 'Rd4',\n",
378
- " 'a5',\n",
379
- " '32',\n",
380
- " 'g3',\n",
381
- " 'Nd5',\n",
382
- " '33',\n",
383
- " 'Bc1',\n",
384
- " 'Nb6',\n",
385
- " '34',\n",
386
- " 'h4',\n",
387
- " 'g6',\n",
388
- " '35',\n",
389
- " 'Bd2',\n",
390
- " 'Nd5',\n",
391
- " '36',\n",
392
- " 'Bc1',\n",
393
- " 'Nb6',\n",
394
- " '37',\n",
395
- " 'Bd2',\n",
396
- " 'Nd5',\n",
397
- " '38',\n",
398
- " 'Rxc4',\n",
399
- " 'Rxb2',\n",
400
- " '39',\n",
401
- " 'Ke1',\n",
402
- " 'Nb6',\n",
403
- " '40',\n",
404
- " 'Re4+',\n",
405
- " 'Kd5',\n",
406
- " '41',\n",
407
- " 'Re7',\n",
408
- " 'Rb1+',\n",
409
- " '42',\n",
410
- " 'Ke2',\n",
411
- " 'Nc4',\n",
412
- " '43',\n",
413
- " 'Bc3',\n",
414
- " 'f5',\n",
415
- " '44',\n",
416
- " 'Rd7+',\n",
417
- " 'Ke6',\n",
418
- " '45',\n",
419
- " 'Rxh7',\n",
420
- " 'Rb3',\n",
421
- " '46',\n",
422
- " 'Bd4',\n",
423
- " 'Rxa3',\n",
424
- " '47',\n",
425
- " 'Rc7',\n",
426
- " 'Ra2+',\n",
427
- " '48',\n",
428
- " 'Kf3',\n",
429
- " 'Kd5',\n",
430
- " '49',\n",
431
- " 'Rd7+',\n",
432
- " 'Kc6',\n",
433
- " '50',\n",
434
- " 'Rg7',\n",
435
- " 'Kd5',\n",
436
- " '51',\n",
437
- " 'Rd7+',\n",
438
- " 'Kc6',\n",
439
- " '52',\n",
440
- " 'Rg7',\n",
441
- " 'Kd5',\n",
442
- " '53',\n",
443
- " 'Rd7+']"
444
- ]
445
- },
446
- "execution_count": 140,
447
- "metadata": {},
448
- "output_type": "execute_result"
449
- }
450
- ],
451
- "source": [
452
- "tokenizer.encode(test_str).tokens"
453
- ]
454
- },
455
- {
456
- "cell_type": "code",
457
- "execution_count": 142,
458
- "metadata": {},
459
- "outputs": [
460
- {
461
- "data": {
462
- "text/plain": [
463
- "[11,\n",
464
- " 48,\n",
465
- " 53,\n",
466
- " 12,\n",
467
- " 79,\n",
468
- " 116,\n",
469
- " 13,\n",
470
- " 45,\n",
471
- " 307,\n",
472
- " 14,\n",
473
- " 193,\n",
474
- " 74,\n",
475
- " 15,\n",
476
- " 434,\n",
477
- " 391,\n",
478
- " 16,\n",
479
- " 154,\n",
480
- " 46,\n",
481
- " 17,\n",
482
- " 190,\n",
483
- " 199,\n",
484
- " 18,\n",
485
- " 51,\n",
486
- " 150,\n",
487
- " 19,\n",
488
- " 65,\n",
489
- " 51,\n",
490
- " 71,\n",
491
- " 199,\n",
492
- " 229,\n",
493
- " 76,\n",
494
- " 102,\n",
495
- " 244,\n",
496
- " 78,\n",
497
- " 253,\n",
498
- " 405,\n",
499
- " 80,\n",
500
- " 342,\n",
501
- " 345,\n",
502
- " 82,\n",
503
- " 228,\n",
504
- " 63,\n",
505
- " 83,\n",
506
- " 400,\n",
507
- " 832,\n",
508
- " 84,\n",
509
- " 1660,\n",
510
- " 432,\n",
511
- " 86,\n",
512
- " 117,\n",
513
- " 176,\n",
514
- " 88,\n",
515
- " 692,\n",
516
- " 319,\n",
517
- " 90,\n",
518
- " 102,\n",
519
- " 322,\n",
520
- " 91,\n",
521
- " 459,\n",
522
- " 386,\n",
523
- " 92,\n",
524
- " 386,\n",
525
- " 791,\n",
526
- " 95,\n",
527
- " 519,\n",
528
- " 177,\n",
529
- " 96,\n",
530
- " 273,\n",
531
- " 201,\n",
532
- " 98,\n",
533
- " 222,\n",
534
- " 214,\n",
535
- " 103,\n",
536
- " 239,\n",
537
- " 246,\n",
538
- " 105,\n",
539
- " 253,\n",
540
- " 65,\n",
541
- " 110,\n",
542
- " 155,\n",
543
- " 241,\n",
544
- " 113,\n",
545
- " 346,\n",
546
- " 421,\n",
547
- " 114,\n",
548
- " 107,\n",
549
- " 324,\n",
550
- " 115,\n",
551
- " 808,\n",
552
- " 246,\n",
553
- " 118,\n",
554
- " 414,\n",
555
- " 77,\n",
556
- " 121,\n",
557
- " 112,\n",
558
- " 176,\n",
559
- " 122,\n",
560
- " 572,\n",
561
- " 319,\n",
562
- " 125,\n",
563
- " 73,\n",
564
- " 100,\n",
565
- " 126,\n",
566
- " 253,\n",
567
- " 176,\n",
568
- " 128,\n",
569
- " 572,\n",
570
- " 319,\n",
571
- " 131,\n",
572
- " 253,\n",
573
- " 176,\n",
574
- " 136,\n",
575
- " 553,\n",
576
- " 578,\n",
577
- " 139,\n",
578
- " 487,\n",
579
- " 319,\n",
580
- " 143,\n",
581
- " 1064,\n",
582
- " 324,\n",
583
- " 145,\n",
584
- " 373,\n",
585
- " 854,\n",
586
- " 149,\n",
587
- " 239,\n",
588
- " 254,\n",
589
- " 153,\n",
590
- " 400,\n",
591
- " 140,\n",
592
- " 156,\n",
593
- " 785,\n",
594
- " 246,\n",
595
- " 160,\n",
596
- " 820,\n",
597
- " 475,\n",
598
- " 165,\n",
599
- " 305,\n",
600
- " 708,\n",
601
- " 169,\n",
602
- " 326,\n",
603
- " 801,\n",
604
- " 179,\n",
605
- " 225,\n",
606
- " 324,\n",
607
- " 186,\n",
608
- " 785,\n",
609
- " 350,\n",
610
- " 194,\n",
611
- " 595,\n",
612
- " 324,\n",
613
- " 200,\n",
614
- " 785,\n",
615
- " 350,\n",
616
- " 210,\n",
617
- " 595,\n",
618
- " 324,\n",
619
- " 224,\n",
620
- " 785]"
621
- ]
622
- },
623
- "execution_count": 142,
624
- "metadata": {},
625
- "output_type": "execute_result"
626
- }
627
- ],
628
- "source": [
629
- "tokenizer.encode(test_str)"
630
- ]
631
- },
632
- {
633
- "cell_type": "code",
634
- "execution_count": 143,
635
- "metadata": {},
636
- "outputs": [
637
- {
638
- "data": {
639
- "text/plain": [
640
- "13677"
641
- ]
642
- },
643
- "execution_count": 143,
644
- "metadata": {},
645
- "output_type": "execute_result"
646
- }
647
- ],
648
- "source": [
649
- "tokenizer.get_vocab_size()"
650
- ]
651
- },
652
- {
653
- "cell_type": "code",
654
- "execution_count": null,
655
- "metadata": {},
656
- "outputs": [],
657
- "source": []
658
- }
659
- ],
660
- "metadata": {
661
- "kernelspec": {
662
- "display_name": "chess",
663
- "language": "python",
664
- "name": "python3"
665
- },
666
- "language_info": {
667
- "codemirror_mode": {
668
- "name": "ipython",
669
- "version": 3
670
- },
671
- "file_extension": ".py",
672
- "mimetype": "text/x-python",
673
- "name": "python",
674
- "nbconvert_exporter": "python",
675
- "pygments_lexer": "ipython3",
676
- "version": "3.11.5"
677
- },
678
- "orig_nbformat": 4
679
- },
680
- "nbformat": 4,
681
- "nbformat_minor": 2
682
- }