Datasets:

ArXiv:
License:
xinjianl commited on
Commit
16a6b55
·
verified ·
1 Parent(s): a533b56

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +286 -0
README.md CHANGED
@@ -1,3 +1,289 @@
1
  ---
2
  license: cc-by-3.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-3.0
3
  ---
4
+
5
+ This is the YODAS manual/automatic subset from our YODAS dataset, it has 369,510 hours of speech.
6
+
7
+ This dataset contains audio utterances and corresponding captions (manual or automatic) from YouTube. Note that manual caption only indicates that it is uploaded by users, but not necessarily transcribed by a human
8
+
9
+
10
+ ## Usage:
11
+
12
+ Considering the extremely large size of the entire dataset, we support two modes of dataset loadings:
13
+
14
+ **standard mode**: each subset will be downloaded to the local dish before first iterating.
15
+
16
+ ```python
17
+ from datasets import load_dataset
18
+
19
+ # Note this will take very long time to download and preprocess
20
+ # you can try small subset for testing purpose
21
+ ds = load_dataset('espnet/yodas', 'en000')
22
+ print(next(iter(ds['train'])))
23
+ ```
24
+
25
+ **streaming mode** most of the files will be streamed instead of downloaded to your local deivce. It can be used to inspect this dataset quickly.
26
+
27
+ ```python
28
+ from datasets import load_dataset
29
+
30
+ # this streaming loading will finish quickly
31
+ ds = load_dataset('espnet/yodas', 'en000', streaming=True)
32
+
33
+
34
+ #{'id': '9774', 'utt_id': 'YoRjzEnRcqu-00000-00000716-00000819', 'audio': {'path': None, 'array': array([-0.009552 , -0.01086426, -0.012146 , ..., -0.01992798,
35
+ # -0.01885986, -0.01074219]), 'sampling_rate': 16000}, 'text': 'There is a saying'}
36
+ print(next(iter(ds['train'])))
37
+ ```
38
+
39
+ ## Subsets/Shards
40
+
41
+ There are 149 languages in this dataset, each language is sharded into at least 1 shard to make it easy for our processing and uploading purposes. The raw data of each shard contains 500G at most.
42
+
43
+ Statistics of each shard can be found in the last section.
44
+
45
+ We distinguish manual caption subset and automatic caption subset by the first digit in each shard's name. The first digit is 0 if it contains manual captions, 1 if it contains automatic captions.
46
+
47
+ For example, `en000` to `en005` are the English shards containing manual subsets, and `en100` to `en127` contains the automatic subsets.
48
+
49
+
50
+ ## Contact
51
+
52
+ If you have any questions, feel free to contact us at the following email address.
53
+
54
+ We made sure that our dataset only consisted of videos with CC licenses during our downloading. But in case you find your video unintentionally included in our dataset and would like to delete it, you can send a delete request to the following email.
55
+
56
57
+
58
+
59
+ ## Statistics
60
+
61
+ Note that there are no overlappings across different subsets, each audio can be included in the dataset at most once.
62
+
63
+
64
+ | Subset name | Hours |
65
+ |------|--------|
66
+ |aa000|0.171472|
67
+ |ab000|0.358342|
68
+ |af000|0.880497|
69
+ |ak000|0.250858|
70
+ |am000|0.924708|
71
+ |ar000|289.707|
72
+ |as000|0.548239|
73
+ |ay000|0.0342722|
74
+ |az000|3.8537|
75
+ |ba000|0.0210556|
76
+ |be000|48.1537|
77
+ |bg000|46.8375|
78
+ |bh000|0.0127111|
79
+ |bi000|0.0125556|
80
+ |bm000|0.00214722|
81
+ |bn000|27.064|
82
+ |bo000|0.746211|
83
+ |br000|0.729914|
84
+ |bs000|9.36959|
85
+ |ca000|74.1909|
86
+ |co000|0.0418639|
87
+ |cr000|0.00584167|
88
+ |cs000|167.604|
89
+ |cy000|5.20017|
90
+ |da000|27.4345|
91
+ |de000|3063.81|
92
+ |de100|4998.11|
93
+ |de101|4995.08|
94
+ |de102|955.389|
95
+ |dz000|0.06365|
96
+ |ee000|0.0411722|
97
+ |el000|126.75|
98
+ |en000|4999.73|
99
+ |en001|5032.69|
100
+ |en002|5039.9|
101
+ |en003|5001.4|
102
+ |en004|5054.66|
103
+ |en005|4027.02|
104
+ |en100|5147.07|
105
+ |en101|5123.05|
106
+ |en102|5117.68|
107
+ |en103|5127.3|
108
+ |en104|5126.33|
109
+ |en105|5097.65|
110
+ |en106|5131.47|
111
+ |en107|5135.6|
112
+ |en108|5136.84|
113
+ |en109|5112.94|
114
+ |en110|5109|
115
+ |en111|5118.69|
116
+ |en112|5122.57|
117
+ |en113|5122.31|
118
+ |en114|5112.36|
119
+ |en115|5112.27|
120
+ |en116|5123.77|
121
+ |en117|5117.31|
122
+ |en118|5117.94|
123
+ |en119|5133.05|
124
+ |en120|5127.79|
125
+ |en121|5129.08|
126
+ |en122|5130.22|
127
+ |en123|5097.56|
128
+ |en124|5116.59|
129
+ |en125|5109.76|
130
+ |en126|5136.21|
131
+ |en127|2404.89|
132
+ |eo000|12.6874|
133
+ |es000|3737.86|
134
+ |es100|5125.25|
135
+ |es101|5130.44|
136
+ |es102|5145.66|
137
+ |es103|5138.26|
138
+ |es104|5139.57|
139
+ |es105|5138.95|
140
+ |es106|2605.26|
141
+ |et000|14.4129|
142
+ |eu000|19.6356|
143
+ |fa000|42.6734|
144
+ |ff000|0.0394972|
145
+ |fi000|212.899|
146
+ |fj000|0.0167806|
147
+ |fo000|0.183244|
148
+ |fr000|2423.7|
149
+ |fr100|5074.93|
150
+ |fr101|5057.79|
151
+ |fr102|5094.14|
152
+ |fr103|3222.95|
153
+ |fy000|0.0651667|
154
+ |ga000|1.49252|
155
+ |gd000|0.01885|
156
+ |gl000|9.52575|
157
+ |gn000|0.181356|
158
+ |gu000|1.99355|
159
+ |ha000|0.102931|
160
+ |hi000|480.79|
161
+ |hi100|2.74865|
162
+ |ho000|0.0562194|
163
+ |hr000|25.9171|
164
+ |ht000|1.07494|
165
+ |hu000|181.763|
166
+ |hy000|1.64412|
167
+ |ia000|0.0856056|
168
+ |id000|1420.09|
169
+ |id100|4902.79|
170
+ |id101|3560.82|
171
+ |ie000|0.134603|
172
+ |ig000|0.086875|
173
+ |ik000|0.00436667|
174
+ |is000|5.07075|
175
+ |it000|1454.98|
176
+ |it100|4989.62|
177
+ |it101|4242.87|
178
+ |iu000|0.0584278|
179
+ |iw000|161.373|
180
+ |ja000|1094.18|
181
+ |ja100|2929.94|
182
+ |jv000|1.08701|
183
+ |ka000|26.9727|
184
+ |ki000|0.000555556|
185
+ |kk000|3.72081|
186
+ |kl000|0.00575556|
187
+ |km000|3.98273|
188
+ |kn000|2.36041|
189
+ |ko000|2774.28|
190
+ |ko100|5018.29|
191
+ |ko101|5048.49|
192
+ |ko102|5018.27|
193
+ |ko103|2587.85|
194
+ |ks000|0.0150444|
195
+ |ku000|1.93419|
196
+ |ky000|14.3917|
197
+ |la000|7.26088|
198
+ |lb000|0.1115|
199
+ |lg000|0.00386111|
200
+ |ln000|0.188739|
201
+ |lo000|0.230986|
202
+ |lt000|17.6507|
203
+ |lv000|2.47671|
204
+ |mg000|0.169653|
205
+ |mi000|1.10089|
206
+ |mk000|5.54236|
207
+ |ml000|13.2386|
208
+ |mn000|2.0232|
209
+ |mr000|7.11602|
210
+ |ms000|28.0219|
211
+ |my000|2.35663|
212
+ |na000|0.0397056|
213
+ |nd000|0.00111111|
214
+ |ne000|2.34936|
215
+ |nl000|413.044|
216
+ |nl100|2490.13|
217
+ |no000|129.183|
218
+ |nv000|0.00319444|
219
+ |oc000|0.166108|
220
+ |om000|0.148478|
221
+ |or000|0.421436|
222
+ |pa000|1.58188|
223
+ |pl000|757.986|
224
+ |ps000|0.9871|
225
+ |pt000|1631.44|
226
+ |pt100|5044.57|
227
+ |pt101|5038.33|
228
+ |pt102|5041.59|
229
+ |pt103|3553.28|
230
+ |qu000|0.748772|
231
+ |rm000|0.192933|
232
+ |rn000|0.00401111|
233
+ |ro000|99.9175|
234
+ |ru000|4968.37|
235
+ |ru001|627.679|
236
+ |ru100|5098.3|
237
+ |ru101|5098|
238
+ |ru102|5119.43|
239
+ |ru103|5107.29|
240
+ |ru104|5121.73|
241
+ |ru105|5088.05|
242
+ |ru106|3393.44|
243
+ |rw000|0.640825|
244
+ |sa000|0.354139|
245
+ |sc000|0.00801111|
246
+ |sd000|0.0768722|
247
+ |sg000|0.000472222|
248
+ |sh000|0.250914|
249
+ |si000|4.2634|
250
+ |sk000|30.0155|
251
+ |sl000|22.9366|
252
+ |sm000|0.102333|
253
+ |sn000|0.0134722|
254
+ |so000|3.36819|
255
+ |sq000|3.48276|
256
+ |sr000|15.2849|
257
+ |st000|0.00324167|
258
+ |su000|0.0404639|
259
+ |sv000|127.411|
260
+ |sw000|1.93409|
261
+ |ta000|59.4805|
262
+ |te000|5.66794|
263
+ |tg000|0.272386|
264
+ |th000|497.14|
265
+ |th100|1.87429|
266
+ |ti000|0.343897|
267
+ |tk000|0.0651806|
268
+ |tn000|0.112181|
269
+ |to000|0.000555556|
270
+ |tr000|588.698|
271
+ |tr100|4067.68|
272
+ |ts000|0.00111111|
273
+ |tt000|0.0441194|
274
+ |ug000|0.0905|
275
+ |uk000|396.598|
276
+ |uk100|450.411|
277
+ |ur000|22.4373|
278
+ |uz000|5.29325|
279
+ |ve000|0.00355278|
280
+ |vi000|779.854|
281
+ |vi100|4963.77|
282
+ |vi101|4239.37|
283
+ |vo000|0.209436|
284
+ |wo000|0.0801528|
285
+ |xh000|0.126628|
286
+ |yi000|0.0810111|
287
+ |yo000|0.322206|
288
+ |zh000|299.368|
289
+ |zu000|0.139931|