Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
100K - 1M
ArXiv:
License:
"""TODO(race): Add a description here.""" | |
import json | |
import datasets | |
_CITATION = """\ | |
@article{lai2017large, | |
title={RACE: Large-scale ReAding Comprehension Dataset From Examinations}, | |
author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard}, | |
journal={arXiv preprint arXiv:1704.04683}, | |
year={2017} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The | |
dataset is collected from English examinations in China, which are designed for middle school and high school students. | |
The dataset can be served as the training and test sets for machine comprehension. | |
""" | |
_URL = "http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz" | |
class Race(datasets.GeneratorBasedBuilder): | |
"""ReAding Comprehension Dataset From Examination dataset from CMU""" | |
VERSION = datasets.Version("0.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="high", description="Exams designed for high school students", version=VERSION), | |
datasets.BuilderConfig( | |
name="middle", description="Exams designed for middle school students", version=VERSION | |
), | |
datasets.BuilderConfig( | |
name="all", description="Exams designed for both high school and middle school students", version=VERSION | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"example_id": datasets.Value("string"), | |
"article": datasets.Value("string"), | |
"answer": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"options": datasets.features.Sequence(datasets.Value("string")) | |
# These are the features of your dataset like images, labels ... | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="http://www.cs.cmu.edu/~glai1/data/race/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
archive = dl_manager.download(_URL) | |
case = str(self.config.name) | |
if case == "all": | |
case = "" | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"train_test_or_eval": f"RACE/test/{case}", "files": dl_manager.iter_archive(archive)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"train_test_or_eval": f"RACE/train/{case}", "files": dl_manager.iter_archive(archive)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"train_test_or_eval": f"RACE/dev/{case}", "files": dl_manager.iter_archive(archive)}, | |
), | |
] | |
def _generate_examples(self, train_test_or_eval, files): | |
"""Yields examples.""" | |
for file_idx, (path, f) in enumerate(files): | |
if path.startswith(train_test_or_eval) and path.endswith(".txt"): | |
data = json.loads(f.read().decode("utf-8")) | |
questions = data["questions"] | |
answers = data["answers"] | |
options = data["options"] | |
for i in range(len(questions)): | |
question = questions[i] | |
answer = answers[i] | |
option = options[i] | |
yield f"{file_idx}_{i}", { | |
"example_id": data["id"], | |
"article": data["article"], | |
"question": question, | |
"answer": answer, | |
"options": option, | |
} | |