ebrigham commited on
Commit
943d6e3
·
1 Parent(s): 12b29ab

Rename dataset_infos.json to dataset_infos.py

Browse files
Files changed (2) hide show
  1. dataset_infos.json +0 -60
  2. dataset_infos.py +151 -0
dataset_infos.json DELETED
@@ -1,60 +0,0 @@
1
- {
2
- "default":
3
- {
4
- "description": "The Stanford Sentiment Treebank consists of sentences from movie reviews and\nhuman annotations of their sentiment. The task is to predict the sentiment of a\ngiven sentence. We use the two-way (positive/negative) class split, and use only\nsentence-level labels.\n",
5
- "license": "Unknown",
6
- "features":
7
- {
8
- "sentence":
9
- {
10
- "dtype": "string",
11
- "id": null,
12
- "_type": "Value"
13
- },
14
- "label":
15
- {
16
- "num_classes": 5,
17
- "names": ["1", "2", "3", "4", "5"],
18
- "id": null,
19
- "_type": "ClassLabel"
20
- }
21
- },
22
- "post_processed": null,
23
- "supervised_keys": null,
24
- "task_templates": null,
25
- "builder_name": "sst2",
26
- "config_name": "default",
27
- "version":
28
- {
29
- "version_str": "2.0.0",
30
- "description": null,
31
- "major": 2,
32
- "minor": 0,
33
- "patch": 0
34
- },
35
- "splits":
36
- {
37
- "train":
38
- {
39
- "name": "train",
40
- "num_bytes": 4690022,
41
- "num_examples": 67349,
42
- "dataset_name": "ebrigham/nl-transportation-reviews-csat"
43
- },
44
- "validation":
45
- {
46
- "name": "validation",
47
- "num_bytes": 106361,
48
- "num_examples": 872,
49
- "dataset_name": "ebrigham/nl-transportation-reviews-csat"
50
- },
51
- "test":
52
- {
53
- "name": "test",
54
- "num_bytes": 216868,
55
- "num_examples": 1821,
56
- "dataset_name": "ebrigham/nl-transportation-reviews-csat"
57
- }
58
- },
59
- }
60
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ #TODO: Add a description here.
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ #_CITATION = """\
28
+ #@InProceedings{huggingface:dataset,
29
+ #title = {A great new dataset},
30
+ #author={huggingface, Inc.
31
+ #},
32
+ #year={2020}
33
+ #}
34
+ #"
35
+
36
+ # TODO: Add description of the dataset here
37
+ # You can copy an official description
38
+ _DESCRIPTION = """\
39
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
40
+ """
41
+
42
+ # TODO: Add a link to an official homepage for the dataset here
43
+ _HOMEPAGE = ""
44
+
45
+ # TODO: Add the licence for the dataset here if you can find it
46
+ _LICENSE = ""
47
+
48
+ # TODO: Add link to the official dataset URLs here
49
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
50
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
51
+ _URLS = {
52
+ "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
53
+ "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
54
+ }
55
+
56
+
57
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
58
+ class NewDataset(datasets.GeneratorBasedBuilder):
59
+ """TODO: Short description of my dataset."""
60
+
61
+ VERSION = datasets.Version("1.1.0")
62
+
63
+ # This is an example of a dataset with multiple configurations.
64
+ # If you don't want/need to define several sub-sets in your dataset,
65
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
66
+
67
+ # If you need to make complex sub-parts in the datasets with configurable options
68
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
69
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
70
+
71
+ # You will be able to load one or the other configurations in the following list with
72
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
73
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
74
+ BUILDER_CONFIGS = [
75
+ datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
76
+ datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
77
+ ]
78
+
79
+ DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
80
+
81
+ def _info(self):
82
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
83
+ if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
84
+ features = datasets.Features(
85
+ {
86
+ "sentence": datasets.Value("string"),
87
+ "option1": datasets.Value("string"),
88
+ "answer": datasets.Value("string")
89
+ # These are the features of your dataset like images, labels ...
90
+ }
91
+ )
92
+ else: # This is an example to show how to have different features for "first_domain" and "second_domain"
93
+ features = datasets.Features(
94
+ {
95
+ "sentence": datasets.Value("string"),
96
+ "option2": datasets.Value("string"),
97
+ "second_domain_answer": datasets.Value("string")
98
+ # These are the features of your dataset like images, labels ...
99
+ }
100
+ )
101
+ return datasets.DatasetInfo(
102
+ # This is the description that will appear on the datasets page.
103
+ description=_DESCRIPTION,
104
+ # This defines the different columns of the dataset and their types
105
+ features=features, # Here we define them above because they are different between the two configurations
106
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
107
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
108
+ # supervised_keys=("sentence", "label"),
109
+ # Homepage of the dataset for documentation
110
+ homepage=_HOMEPAGE,
111
+ # License for the dataset if available
112
+ license=_LICENSE,
113
+ # Citation for the dataset
114
+ citation=_CITATION,
115
+ )
116
+
117
+ def _split_generators(self, dl_manager):
118
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
119
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
120
+
121
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
122
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
123
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
124
+ urls = _URLS[self.config.name]
125
+ data_dir = dl_manager.download_and_extract(urls)
126
+ return [
127
+ datasets.SplitGenerator(
128
+ name=datasets.Split.TRAIN,
129
+ # These kwargs will be passed to _generate_examples
130
+ gen_kwargs={
131
+ "filepath": os.path.join(data_dir, "train.csv"),
132
+ "split": "train",
133
+ },
134
+ ),
135
+ datasets.SplitGenerator(
136
+ name=datasets.Split.VALIDATION,
137
+ # These kwargs will be passed to _generate_examples
138
+ gen_kwargs={
139
+ "filepath": os.path.join(data_dir, "validation.csv"),
140
+ "split": "dev",
141
+ },
142
+ ),
143
+ datasets.SplitGenerator(
144
+ name=datasets.Split.TEST,
145
+ # These kwargs will be passed to _generate_examples
146
+ gen_kwargs={
147
+ "filepath": os.path.join(data_dir, "test.csv"),
148
+ "split": "test"
149
+ },
150
+ ),
151
+ ]