The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 4 new columns ({'num_samples', 'Dataset', 'attributes', 'statistics'}) and 3 missing columns ({'updated_at', 'chunks', 'config'}).

This happened while the json dataset builder was generating data using

hf://datasets/earthflow/UrbanSARFlood/train/metadata.json (at revision cf27d5b36e908a121e510000422b448f9c4025ee)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Dataset: string
              num_samples: int64
              attributes: struct<name: struct<dtype: string>, image: struct<dtype: string, format: string, bands: list<item: struct<name: string, description: string>>>, class: struct<dtype: string, format: string>>
                child 0, name: struct<dtype: string>
                    child 0, dtype: string
                child 1, image: struct<dtype: string, format: string, bands: list<item: struct<name: string, description: string>>>
                    child 0, dtype: string
                    child 1, format: string
                    child 2, bands: list<item: struct<name: string, description: string>>
                        child 0, item: struct<name: string, description: string>
                            child 0, name: string
                            child 1, description: string
                child 2, class: struct<dtype: string, format: string>
                    child 0, dtype: string
                    child 1, format: string
              statistics: struct<std_in: list<item: double>, mean_in: list<item: double>, median_in: list<item: double>, max_in: list<item: double>, min_in: list<item: double>>
                child 0, std_in: list<item: double>
                    child 0, item: double
                child 1, mean_in: list<item: double>
                    child 0, item: double
                child 2, median_in: list<item: double>
                    child 0, item: double
                child 3, max_in: list<item: double>
                    child 0, item: double
                child 4, min_in: list<item: double>
                    child 0, item: double
              to
              {'chunks': [{'chunk_bytes': Value(dtype='int64', id=None), 'chunk_size': Value(dtype='int64', id=None), 'dim': Value(dtype='null', id=None), 'filename': Value(dtype='string', id=None)}], 'config': {'chunk_bytes': Value(dtype='int64', id=None), 'chunk_size': Value(dtype='null', id=None), 'compression': Value(dtype='null', id=None), 'data_format': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'data_spec': Value(dtype='string', id=None), 'encryption': Value(dtype='null', id=None), 'item_loader': Value(dtype='string', id=None)}, 'updated_at': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1412, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 988, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 4 new columns ({'num_samples', 'Dataset', 'attributes', 'statistics'}) and 3 missing columns ({'updated_at', 'chunks', 'config'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/earthflow/UrbanSARFlood/train/metadata.json (at revision cf27d5b36e908a121e510000422b448f9c4025ee)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

chunks
list
config
dict
updated_at
string
Dataset
string
num_samples
int64
attributes
dict
statistics
dict
[ { "chunk_bytes": 255664203, "chunk_size": 284, "dim": null, "filename": "chunk-0-0.bin" }, { "chunk_bytes": 255628828, "chunk_size": 287, "dim": null, "filename": "chunk-0-1.bin" }, { "chunk_bytes": 255494971, "chunk_size": 339, "dim": null, "filename": "chunk-0-2.bin" }, { "chunk_bytes": 255749055, "chunk_size": 282, "dim": null, "filename": "chunk-0-3.bin" }, { "chunk_bytes": 255409598, "chunk_size": 304, "dim": null, "filename": "chunk-0-4.bin" }, { "chunk_bytes": 255279159, "chunk_size": 397, "dim": null, "filename": "chunk-0-5.bin" }, { "chunk_bytes": 255641589, "chunk_size": 322, "dim": null, "filename": "chunk-0-6.bin" }, { "chunk_bytes": 30509415, "chunk_size": 35, "dim": null, "filename": "chunk-0-7.bin" }, { "chunk_bytes": 255884812, "chunk_size": 337, "dim": null, "filename": "chunk-1-0.bin" }, { "chunk_bytes": 255471550, "chunk_size": 500, "dim": null, "filename": "chunk-1-1.bin" }, { "chunk_bytes": 255704597, "chunk_size": 390, "dim": null, "filename": "chunk-1-2.bin" }, { "chunk_bytes": 255464678, "chunk_size": 305, "dim": null, "filename": "chunk-1-3.bin" }, { "chunk_bytes": 255532743, "chunk_size": 348, "dim": null, "filename": "chunk-1-4.bin" }, { "chunk_bytes": 252170942, "chunk_size": 370, "dim": null, "filename": "chunk-1-5.bin" }, { "chunk_bytes": 255408998, "chunk_size": 410, "dim": null, "filename": "chunk-2-0.bin" }, { "chunk_bytes": 255857895, "chunk_size": 460, "dim": null, "filename": "chunk-2-1.bin" }, { "chunk_bytes": 255556231, "chunk_size": 302, "dim": null, "filename": "chunk-2-2.bin" }, { "chunk_bytes": 255197438, "chunk_size": 296, "dim": null, "filename": "chunk-2-3.bin" }, { "chunk_bytes": 255222068, "chunk_size": 356, "dim": null, "filename": "chunk-2-4.bin" }, { "chunk_bytes": 255981482, "chunk_size": 319, "dim": null, "filename": "chunk-2-5.bin" }, { "chunk_bytes": 93729138, "chunk_size": 107, "dim": null, "filename": "chunk-2-6.bin" }, { "chunk_bytes": 255652763, "chunk_size": 296, "dim": null, "filename": "chunk-3-0.bin" }, { "chunk_bytes": 255675835, "chunk_size": 278, "dim": null, "filename": "chunk-3-1.bin" }, { "chunk_bytes": 255676078, "chunk_size": 351, "dim": null, "filename": "chunk-3-2.bin" }, { "chunk_bytes": 255120978, "chunk_size": 274, "dim": null, "filename": "chunk-3-3.bin" }, { "chunk_bytes": 255881943, "chunk_size": 376, "dim": null, "filename": "chunk-3-4.bin" }, { "chunk_bytes": 255665616, "chunk_size": 466, "dim": null, "filename": "chunk-3-5.bin" }, { "chunk_bytes": 166586481, "chunk_size": 209, "dim": null, "filename": "chunk-3-6.bin" }, { "chunk_bytes": 255563529, "chunk_size": 306, "dim": null, "filename": "chunk-4-0.bin" }, { "chunk_bytes": 255774369, "chunk_size": 332, "dim": null, "filename": "chunk-4-1.bin" }, { "chunk_bytes": 255103374, "chunk_size": 290, "dim": null, "filename": "chunk-4-2.bin" }, { "chunk_bytes": 255461346, "chunk_size": 293, "dim": null, "filename": "chunk-4-3.bin" }, { "chunk_bytes": 255085054, "chunk_size": 356, "dim": null, "filename": "chunk-4-4.bin" }, { "chunk_bytes": 255244626, "chunk_size": 309, "dim": null, "filename": "chunk-4-5.bin" }, { "chunk_bytes": 255536494, "chunk_size": 303, "dim": null, "filename": "chunk-4-6.bin" }, { "chunk_bytes": 34717487, "chunk_size": 62, "dim": null, "filename": "chunk-4-7.bin" }, { "chunk_bytes": 255409443, "chunk_size": 308, "dim": null, "filename": "chunk-5-0.bin" }, { "chunk_bytes": 255120224, "chunk_size": 295, "dim": null, "filename": "chunk-5-1.bin" }, { "chunk_bytes": 255616617, "chunk_size": 331, "dim": null, "filename": "chunk-5-2.bin" }, { "chunk_bytes": 255709028, "chunk_size": 348, "dim": null, "filename": "chunk-5-3.bin" }, { "chunk_bytes": 255396706, "chunk_size": 286, "dim": null, "filename": "chunk-5-4.bin" }, { "chunk_bytes": 255749011, "chunk_size": 282, "dim": null, "filename": "chunk-5-5.bin" }, { "chunk_bytes": 255789015, "chunk_size": 295, "dim": null, "filename": "chunk-5-6.bin" }, { "chunk_bytes": 82089399, "chunk_size": 106, "dim": null, "filename": "chunk-5-7.bin" }, { "chunk_bytes": 255843556, "chunk_size": 323, "dim": null, "filename": "chunk-6-0.bin" }, { "chunk_bytes": 255632281, "chunk_size": 281, "dim": null, "filename": "chunk-6-1.bin" }, { "chunk_bytes": 255614149, "chunk_size": 286, "dim": null, "filename": "chunk-6-2.bin" }, { "chunk_bytes": 255956699, "chunk_size": 278, "dim": null, "filename": "chunk-6-3.bin" }, { "chunk_bytes": 255648689, "chunk_size": 373, "dim": null, "filename": "chunk-6-4.bin" }, { "chunk_bytes": 255165406, "chunk_size": 277, "dim": null, "filename": "chunk-6-5.bin" }, { "chunk_bytes": 255844760, "chunk_size": 281, "dim": null, "filename": "chunk-6-6.bin" }, { "chunk_bytes": 140629448, "chunk_size": 152, "dim": null, "filename": "chunk-6-7.bin" }, { "chunk_bytes": 255696002, "chunk_size": 279, "dim": null, "filename": "chunk-7-0.bin" }, { "chunk_bytes": 255642227, "chunk_size": 366, "dim": null, "filename": "chunk-7-1.bin" }, { "chunk_bytes": 255211792, "chunk_size": 288, "dim": null, "filename": "chunk-7-2.bin" }, { "chunk_bytes": 255567757, "chunk_size": 293, "dim": null, "filename": "chunk-7-3.bin" }, { "chunk_bytes": 255254944, "chunk_size": 293, "dim": null, "filename": "chunk-7-4.bin" }, { "chunk_bytes": 255469597, "chunk_size": 332, "dim": null, "filename": "chunk-7-5.bin" }, { "chunk_bytes": 255508677, "chunk_size": 306, "dim": null, "filename": "chunk-7-6.bin" }, { "chunk_bytes": 85460587, "chunk_size": 94, "dim": null, "filename": "chunk-7-7.bin" } ]
{ "chunk_bytes": 256000000, "chunk_size": null, "compression": null, "data_format": [ "bytes", "str", "numpy" ], "data_spec": "[1, {\"type\": \"builtins.dict\", \"context\": \"[\\\"hdf5_data\\\", \\\"name\\\", \\\"class\\\"]\", \"children_spec\": [{\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}]}]", "encryption": null, "item_loader": "PyTreeLoader" }
1733926869.509376
null
null
null
null
null
null
null
UrbanSARFloods
18,004
{ "name": { "dtype": "str" }, "image": { "dtype": "float16", "format": "numpy", "bands": [ { "name": "Band_1", "description": "pre_coherence_VH" }, { "name": "Band_2", "description": "pre_coherence_VV" }, { "name": "Band_3", "description": "post_coherence_VH" }, { "name": "Band_4", "description": "post_coherence_VV" }, { "name": "Band_5", "description": "pre_intensity_VH" }, { "name": "Band_6", "description": "pre_intensity_VV" }, { "name": "Band_7", "description": "post_intensity_VH" }, { "name": "Band_8", "description": "post_intensity_VV" } ] }, "class": { "dtype": "uint8", "format": "numpy" } }
{ "std_in": [ 0.16280619, 0.20849304, 0.14008107, 0.19767644, 4.07141682, 3.94773216, 4.21006244, 4.05494136 ], "mean_in": [ 0.23651549, 0.31761484, 0.18514981, 0.26901252, -14.57879175, -8.6098158, -14.29073382, -8.33534564 ], "median_in": [ 0.23651549, 0.31761484, 0.18514981, 0.26901252, -14.57879175, -8.6098158, -14.29073382, -8.33534564 ], "max_in": [ 0.56519184, 0.70935154, 0.53432751, 0.66288453, -7.85489845, -1.61887217, -7.48478746, -1.26720715 ], "min_in": [ 0.03540783, 0.04156244, 0.03062815, 0.03643807, -23.19632721, -16.43351936, -23.46723938, -16.71599197 ] }