Datasets:
File size: 10,266 Bytes
3d5cc7c 428f22e 1b0a0b9 428f22e 3d5cc7c 2131957 f44be8c d258a8a 5c08e93 d258a8a 5c08e93 d258a8a 6be594a 3d5cc7c 2131957 3d5cc7c 3029b8a 3d5cc7c 84c6c3b 3d5cc7c 84c6c3b 3d5cc7c 3029b8a d258a8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
---
annotations_creators:
- no-annotation
language_creators:
- expert-generated
language:
- en
- es
license:
- mit
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- multiple-choice-qa
paperswithcode_id: headqa
pretty_name: HEAD-QA
dataset_info:
- config_name: es
features:
- name: name
dtype: string
- name: year
dtype: string
- name: category
dtype: string
- name: qid
dtype: int32
- name: qtext
dtype: string
- name: ra
dtype: int32
- name: image
dtype: image
- name: answers
list:
- name: aid
dtype: int32
- name: atext
dtype: string
splits:
- name: train
num_bytes: 1229678
num_examples: 2657
- name: test
num_bytes: 1204006
num_examples: 2742
- name: validation
num_bytes: 573354
num_examples: 1366
download_size: 79365502
dataset_size: 3007038
- config_name: en
features:
- name: name
dtype: string
- name: year
dtype: string
- name: category
dtype: string
- name: qid
dtype: int32
- name: qtext
dtype: string
- name: ra
dtype: int32
- name: image
dtype: image
- name: answers
list:
- name: aid
dtype: int32
- name: atext
dtype: string
splits:
- name: train
num_bytes: 1156808
num_examples: 2657
- name: test
num_bytes: 1131536
num_examples: 2742
- name: validation
num_bytes: 539892
num_examples: 1366
download_size: 79365502
dataset_size: 2828236
config_names:
- en
- es
---
# Dataset Card for HEAD-QA
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [HEAD-QA homepage](https://aghie.github.io/head-qa/)
- **Repository:** [HEAD-QA repository](https://github.com/aghie/head-qa)
- **Paper:** [HEAD-QA: A Healthcare Dataset for Complex Reasoning](https://www.aclweb.org/anthology/P19-1092/)
- **Leaderboard:** [HEAD-QA leaderboard](https://aghie.github.io/head-qa/#leaderboard-general)
- **Point of Contact:** [María Grandury](mailto:[email protected]) (Dataset Submitter)
### Dataset Summary
HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the
Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the
[Ministerio de Sanidad, Consumo y Bienestar Social](https://www.mscbs.gob.es/), who also provides direct
[access](https://fse.mscbs.gob.es/fseweb/view/public/datosanteriores/cuadernosExamen/busquedaConvocatoria.xhtml)
to the exams of the last 5 years (in Spanish).
```
Date of the last update of the documents object of the reuse: January, 14th, 2019.
```
HEAD-QA tries to make these questions accesible for the Natural Language Processing community. We hope it is an useful resource towards achieving better QA systems. The dataset contains questions about the following topics:
- Medicine
- Nursing
- Psychology
- Chemistry
- Pharmacology
- Biology
### Supported Tasks and Leaderboards
- `multiple-choice-qa`: HEAD-QA is a multi-choice question answering testbed to encourage research on complex reasoning.
### Languages
The questions and answers are available in both Spanish (BCP-47 code: 'es-ES') and English (BCP-47 code: 'en').
The language by default is Spanish:
```
from datasets import load_dataset
data_es = load_dataset('head_qa')
data_en = load_dataset('head_qa', 'en')
```
## Dataset Structure
### Data Instances
A typical data point comprises a question `qtext`, multiple possible answers `atext` and the right answer `ra`.
An example from the HEAD-QA dataset looks as follows:
```
{
'qid': '1',
'category': 'biology',
'qtext': 'Los potenciales postsinápticos excitadores:',
'answers': [
{
'aid': 1,
'atext': 'Son de tipo todo o nada.'
},
{
'aid': 2,
'atext': 'Son hiperpolarizantes.'
},
{
'aid': 3,
'atext': 'Se pueden sumar.'
},
{
'aid': 4,
'atext': 'Se propagan a largas distancias.'
},
{
'aid': 5,
'atext': 'Presentan un periodo refractario.'
}],
'ra': '3',
'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=675x538 at 0x1B42B6A1668>,
'name': 'Cuaderno_2013_1_B',
'year': '2013'
}
```
### Data Fields
- `qid`: question identifier (int)
- `category`: category of the question: "medicine", "nursing", "psychology", "chemistry", "pharmacology", "biology"
- `qtext`: question text
- `answers`: list of possible answers. Each element of the list is a dictionary with 2 keys:
- `aid`: answer identifier (int)
- `atext`: answer text
- `ra`: `aid` of the right answer (int)
- `image`: (optional) a `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `name`: name of the exam from which the question was extracted
- `year`: year in which the exam took place
### Data Splits
The data is split into train, validation and test set for each of the two languages. The split sizes are as follow:
| | Train | Val | Test |
| ----- | ------ | ----- | ---- |
| Spanish | 2657 | 1366 | 2742 |
| English | 2657 | 1366 | 2742 |
## Dataset Creation
### Curation Rationale
As motivation for the creation of this dataset, here is the abstract of the paper:
"We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions
come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly
specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information
retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well
behind human performance, demonstrating its usefulness as a benchmark for future work."
### Source Data
#### Initial Data Collection and Normalization
The questions come from exams to access a specialized position in the Spanish healthcare system, and are designed by the
[Ministerio de Sanidad, Consumo y Bienestar Social](https://www.mscbs.gob.es/), who also provides direct
[access](https://fse.mscbs.gob.es/fseweb/view/public/datosanteriores/cuadernosExamen/busquedaConvocatoria.xhtml)
to the exams of the last 5 years (in Spanish).
#### Who are the source language producers?
The dataset was created by David Vilares and Carlos Gómez-Rodríguez.
### Annotations
The dataset does not contain any additional annotations.
#### Annotation process
[N/A]
#### Who are the annotators?
[N/A]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset was created by David Vilares and Carlos Gómez-Rodríguez.
### Licensing Information
According to the [HEAD-QA homepage](https://aghie.github.io/head-qa/#legal-requirements):
The Ministerio de Sanidad, Consumo y Biniestar Social allows the redistribution of the exams and their content under [certain conditions:](https://www.mscbs.gob.es/avisoLegal/home.htm)
- The denaturalization of the content of the information is prohibited in any circumstance.
- The user is obliged to cite the source of the documents subject to reuse.
- The user is obliged to indicate the date of the last update of the documents object of the reuse.
According to the [HEAD-QA repository](https://github.com/aghie/head-qa/blob/master/LICENSE):
The dataset is licensed under the [MIT License](https://mit-license.org/).
### Citation Information
```
@inproceedings{vilares-gomez-rodriguez-2019-head,
title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning",
author = "Vilares, David and
G{\'o}mez-Rodr{\'i}guez, Carlos",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-1092",
doi = "10.18653/v1/P19-1092",
pages = "960--966",
abstract = "We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.",
}
```
### Contributions
Thanks to [@mariagrandury](https://github.com/mariagrandury) for adding this dataset. |