File size: 10,266 Bytes
3d5cc7c
 
 
 
 
428f22e
1b0a0b9
 
428f22e
3d5cc7c
 
 
 
 
 
 
 
 
 
 
2131957
f44be8c
d258a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c08e93
 
 
d258a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c08e93
 
 
d258a8a
 
 
 
 
6be594a
 
 
3d5cc7c
 
 
 
 
 
 
2131957
3d5cc7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3029b8a
3d5cc7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c6c3b
3d5cc7c
 
 
 
 
 
 
 
 
 
 
 
 
 
84c6c3b
3d5cc7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3029b8a
 
 
d258a8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
---
annotations_creators:
- no-annotation
language_creators:
- expert-generated
language:
- en
- es
license:
- mit
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- multiple-choice-qa
paperswithcode_id: headqa
pretty_name: HEAD-QA
dataset_info:
- config_name: es
  features:
  - name: name
    dtype: string
  - name: year
    dtype: string
  - name: category
    dtype: string
  - name: qid
    dtype: int32
  - name: qtext
    dtype: string
  - name: ra
    dtype: int32
  - name: image
    dtype: image
  - name: answers
    list:
    - name: aid
      dtype: int32
    - name: atext
      dtype: string
  splits:
  - name: train
    num_bytes: 1229678
    num_examples: 2657
  - name: test
    num_bytes: 1204006
    num_examples: 2742
  - name: validation
    num_bytes: 573354
    num_examples: 1366
  download_size: 79365502
  dataset_size: 3007038
- config_name: en
  features:
  - name: name
    dtype: string
  - name: year
    dtype: string
  - name: category
    dtype: string
  - name: qid
    dtype: int32
  - name: qtext
    dtype: string
  - name: ra
    dtype: int32
  - name: image
    dtype: image
  - name: answers
    list:
    - name: aid
      dtype: int32
    - name: atext
      dtype: string
  splits:
  - name: train
    num_bytes: 1156808
    num_examples: 2657
  - name: test
    num_bytes: 1131536
    num_examples: 2742
  - name: validation
    num_bytes: 539892
    num_examples: 1366
  download_size: 79365502
  dataset_size: 2828236
config_names:
- en
- es
---

# Dataset Card for HEAD-QA

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [HEAD-QA homepage](https://aghie.github.io/head-qa/)
- **Repository:** [HEAD-QA repository](https://github.com/aghie/head-qa)
- **Paper:** [HEAD-QA: A Healthcare Dataset for Complex Reasoning](https://www.aclweb.org/anthology/P19-1092/)
- **Leaderboard:** [HEAD-QA leaderboard](https://aghie.github.io/head-qa/#leaderboard-general)
- **Point of Contact:** [María Grandury](mailto:[email protected]) (Dataset Submitter)

### Dataset Summary

HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the 
Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the 
[Ministerio de Sanidad, Consumo y Bienestar Social](https://www.mscbs.gob.es/), who also provides direct 
[access](https://fse.mscbs.gob.es/fseweb/view/public/datosanteriores/cuadernosExamen/busquedaConvocatoria.xhtml)
to the exams of the last 5 years (in Spanish).

```
Date of the last update of the documents object of the reuse: January, 14th, 2019.
```

HEAD-QA tries to make these questions accesible for the Natural Language Processing community. We hope it is an useful resource towards achieving better QA systems. The dataset contains questions about the following topics:
- Medicine
- Nursing
- Psychology
- Chemistry
- Pharmacology
- Biology

### Supported Tasks and Leaderboards

- `multiple-choice-qa`: HEAD-QA is a multi-choice question answering testbed to encourage research on complex reasoning.

### Languages

The questions and answers are available in both Spanish (BCP-47 code: 'es-ES') and English (BCP-47 code: 'en').

The language by default is Spanish:
```
from datasets import load_dataset

data_es = load_dataset('head_qa')

data_en = load_dataset('head_qa', 'en')
```

## Dataset Structure

### Data Instances

A typical data point comprises a question `qtext`, multiple possible answers `atext` and the right answer `ra`.

An example from the HEAD-QA dataset looks as follows:
```
{
'qid': '1', 
'category': 'biology', 
'qtext': 'Los potenciales postsinápticos excitadores:',
'answers': [
	{
		'aid': 1, 
		'atext': 'Son de tipo todo o nada.'
	}, 
	{
		'aid': 2, 
		'atext': 'Son hiperpolarizantes.'
	},
	{
		'aid': 3, 
		'atext': 'Se pueden sumar.'
	},
	{
		'aid': 4, 
		'atext': 'Se propagan a largas distancias.'
	},
	{
		'aid': 5, 
		'atext': 'Presentan un periodo refractario.'
	}],
'ra': '3',
'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=675x538 at 0x1B42B6A1668>,
'name': 'Cuaderno_2013_1_B',
'year': '2013'
}
```

### Data Fields

- `qid`: question identifier (int)
- `category`: category of the question: "medicine", "nursing", "psychology", "chemistry", "pharmacology", "biology"
- `qtext`: question text
- `answers`: list of possible answers. Each element of the list is a dictionary with 2 keys:
    - `aid`: answer identifier (int)
    - `atext`: answer text
- `ra`: `aid` of the right answer (int)
- `image`: (optional) a `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `name`: name of the exam from which the question was extracted
- `year`: year in which the exam took place

### Data Splits

The data is split into train, validation and test set for each of the two languages. The split sizes are as follow:

|         | Train  | Val   | Test |
| -----   | ------ | ----- | ---- |
| Spanish | 2657   | 1366  | 2742 |
| English | 2657   | 1366  | 2742 |

## Dataset Creation

### Curation Rationale

As motivation for the creation of this dataset, here is the abstract of the paper:

"We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions
come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly 
specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information 
retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well 
behind human performance, demonstrating its usefulness as a benchmark for future work."

### Source Data

#### Initial Data Collection and Normalization

The questions come from exams to access a specialized position in the Spanish healthcare system, and are designed by the
[Ministerio de Sanidad, Consumo y Bienestar Social](https://www.mscbs.gob.es/), who also provides direct 
[access](https://fse.mscbs.gob.es/fseweb/view/public/datosanteriores/cuadernosExamen/busquedaConvocatoria.xhtml)
to the exams of the last 5 years (in Spanish).

#### Who are the source language producers?

The dataset was created by David Vilares and Carlos Gómez-Rodríguez.

### Annotations

The dataset does not contain any additional annotations.

#### Annotation process

[N/A]

#### Who are the annotators?

[N/A]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

The dataset was created by David Vilares and Carlos Gómez-Rodríguez.

### Licensing Information

According to the [HEAD-QA homepage](https://aghie.github.io/head-qa/#legal-requirements):

The Ministerio de Sanidad, Consumo y Biniestar Social allows the redistribution of the exams and their content under [certain conditions:](https://www.mscbs.gob.es/avisoLegal/home.htm)

- The denaturalization of the content of the information is prohibited in any circumstance.
- The user is obliged to cite the source of the documents subject to reuse.
- The user is obliged to indicate the date of the last update of the documents object of the reuse.

According to the [HEAD-QA repository](https://github.com/aghie/head-qa/blob/master/LICENSE):

The dataset is licensed under the [MIT License](https://mit-license.org/).

### Citation Information

```
@inproceedings{vilares-gomez-rodriguez-2019-head,
    title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning",
    author = "Vilares, David  and
      G{\'o}mez-Rodr{\'i}guez, Carlos",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/P19-1092",
    doi = "10.18653/v1/P19-1092",
    pages = "960--966",
    abstract = "We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.",
}
```
### Contributions

Thanks to [@mariagrandury](https://github.com/mariagrandury) for adding this dataset.