Datasets:
File size: 6,214 Bytes
3d5cc7c 3f6b204 3d5cc7c 84c6c3b 3d5cc7c 84c6c3b 3d5cc7c 84c6c3b 3d5cc7c 84c6c3b 3d5cc7c 84c6c3b 3d5cc7c 84c6c3b 3d5cc7c 84c6c3b e0d9502 3d5cc7c 2131957 3d5cc7c 2131957 3d5cc7c 84c6c3b 3d5cc7c 2131957 3d5cc7c 2131957 3d5cc7c 84c6c3b 3d5cc7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HEAD-QA: A Healthcare Dataset for Complex Reasoning"""
import json
import os
import datasets
_CITATION = """\
@inproceedings{vilares-gomez-rodriguez-2019-head,
title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning",
author = "Vilares, David and
G{\'o}mez-Rodr{\'i}guez, Carlos",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-1092",
doi = "10.18653/v1/P19-1092",
pages = "960--966",
abstract = "We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.",
}
"""
_DESCRIPTION = """\
HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the
Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio
de Sanidad, Consumo y Bienestar Social.
The dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology.
"""
_HOMEPAGE = "https://aghie.github.io/head-qa/"
_LICENSE = "MIT License"
_REPO = "https://huggingface.co/datasets/head_qa/resolve/main/data"
_URL = f"{_REPO}/head-qa-es-en-pdfs.zip"
_DIRS = {"es": "HEAD", "en": "HEAD_EN"}
class HeadQA(datasets.GeneratorBasedBuilder):
"""HEAD-QA: A Healthcare Dataset for Complex Reasoning"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="es", version=VERSION, description="Spanish HEAD dataset"),
datasets.BuilderConfig(name="en", version=VERSION, description="English HEAD dataset"),
]
DEFAULT_CONFIG_NAME = "es"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"name": datasets.Value("string"),
"year": datasets.Value("string"),
"category": datasets.Value("string"),
"qid": datasets.Value("int32"),
"qtext": datasets.Value("string"),
"ra": datasets.Value("int32"),
"image": datasets.Image(),
"answers": [
{
"aid": datasets.Value("int32"),
"atext": datasets.Value("string"),
}
],
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URL)
dir = _DIRS[self.config.name]
data_lang_dir = os.path.join(data_dir, dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"train_{dir}.json")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"test_{dir}.json")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"dev_{dir}.json")},
),
]
def _generate_examples(self, data_dir, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
head_qa = json.load(f)
for exam_id, exam in enumerate(head_qa["exams"]):
content = head_qa["exams"][exam]
name = content["name"].strip()
year = content["year"].strip()
category = content["category"].strip()
for question in content["data"]:
qid = int(question["qid"].strip())
qtext = question["qtext"].strip()
ra = int(question["ra"].strip())
image_path = question["image"].strip()
aids = [answer["aid"] for answer in question["answers"]]
atexts = [answer["atext"].strip() for answer in question["answers"]]
answers = [{"aid": aid, "atext": atext} for aid, atext in zip(aids, atexts)]
id_ = f"{exam_id}_{qid}"
yield id_, {
"name": name,
"year": year,
"category": category,
"qid": qid,
"qtext": qtext,
"ra": ra,
"image": os.path.join(data_dir, image_path) if image_path else None,
"answers": answers,
}
|