|
import json |
|
|
|
import datasets |
|
from datasets import Features, Sequence, Array2D, Value |
|
from datasets.info import DatasetInfo |
|
|
|
|
|
_DESCRIPTION = """\ |
|
GQA is a dataset containing 58K questions about subgraphs extracted from Wikidata. |
|
The data are made from Lc-QuAD 2.0 and MCWQ datasets. |
|
""" |
|
|
|
_URLS = { |
|
"train": "train.jsonl", |
|
"test": "test.jsonl", |
|
} |
|
|
|
class GQAConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for GQA.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for GQA. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(GQAConfig, self).__init__(**kwargs) |
|
|
|
|
|
class GQA(datasets.GeneratorBasedBuilder): |
|
"""GQA: A graph question answering dataset.""" |
|
def _info(self) -> DatasetInfo: |
|
return DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=Features( |
|
{ |
|
"id": Value("string"), |
|
"question": Value("string"), |
|
"answers": Sequence(Value("string")), |
|
"sparql": Value("string"), |
|
"subgraph": |
|
{ |
|
"entities": Sequence(Value("string")), |
|
"relations": Sequence(Value("string")), |
|
"adjacency": Array2D(shape=(None, 3), dtype='int64'), |
|
"entity_labels": Sequence(datasets.Value("string")), |
|
"relation_labels": Sequence(Value("string")), |
|
} |
|
} |
|
) |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
for row in f: |
|
sample = json.loads(row) |
|
id_ = sample["id"] |
|
yield id_, sample |
|
|