import pyarrow as pa import whisper from pynput import keyboard from pynput.keyboard import Key from dora import DoraStatus import torch import numpy as np import pyarrow as pa import sounddevice as sd import gc # garbage collect library model = whisper.load_model("base") SAMPLE_RATE = 16000 MAX_DURATION = 10 MIN_DURATION = 6 class Operator: """ Transforming Speech to Text using OpenAI Whisper model """ def __init__(self) -> None: self.policy_init = False def on_event( self, dora_event, send_output, ) -> DoraStatus: global model if dora_event["type"] == "INPUT": ## Check for keyboard event with keyboard.Events() as events: event = events.get(1.0) if event is not None and event.key == Key.up: # send_output("led", pa.array([0, 255, 0])) if self.policy_init == False: self.policy_init = True duration = MAX_DURATION else: duration = MIN_DURATION ## Microphone audio_data = sd.rec( int(SAMPLE_RATE * duration), samplerate=SAMPLE_RATE, channels=1, dtype=np.int16, blocking=True, ) audio = audio_data.ravel().astype(np.float32) / 32768.0 ## Speech to text audio = whisper.pad_or_trim(audio) result = model.transcribe(audio, language="en") send_output( "text", pa.array([result["text"]]), dora_event["metadata"] ) # send_output("led", pa.array([0, 0, 255])) gc.collect() torch.cuda.empty_cache() return DoraStatus.CONTINUE