haixuantao
commited on
Commit
·
8852f54
1
Parent(s):
c3afd26
updating clarity of the video
Browse files- graphs/dataflow_robot_vlm.yml +6 -2
- operators/llm_op.py +11 -3
- operators/planning_op.py +32 -16
- operators/plot.py +9 -0
- operators/policy.py +4 -0
- operators/robot.py +10 -2
- operators/utils.py +1 -1
- operators/whisper_op.py +10 -2
graphs/dataflow_robot_vlm.yml
CHANGED
@@ -16,6 +16,7 @@ nodes:
|
|
16 |
inputs:
|
17 |
tick: dora/timer/millis/750
|
18 |
planning_control: planning/control
|
|
|
19 |
outputs:
|
20 |
- control_reply
|
21 |
- position
|
@@ -33,6 +34,7 @@ nodes:
|
|
33 |
audio: dora/timer/millis/1000
|
34 |
outputs:
|
35 |
- text
|
|
|
36 |
|
37 |
- id: llm
|
38 |
operator:
|
@@ -48,7 +50,8 @@ nodes:
|
|
48 |
python: ../operators/policy.py
|
49 |
inputs:
|
50 |
init: llm/init
|
51 |
-
|
|
|
52 |
outputs:
|
53 |
- go_to
|
54 |
- reloaded
|
@@ -65,7 +68,8 @@ nodes:
|
|
65 |
queue_size: 1
|
66 |
outputs:
|
67 |
- control
|
68 |
-
-
|
|
|
69 |
|
70 |
|
71 |
|
|
|
16 |
inputs:
|
17 |
tick: dora/timer/millis/750
|
18 |
planning_control: planning/control
|
19 |
+
led: whisper/led
|
20 |
outputs:
|
21 |
- control_reply
|
22 |
- position
|
|
|
34 |
audio: dora/timer/millis/1000
|
35 |
outputs:
|
36 |
- text
|
37 |
+
- led
|
38 |
|
39 |
- id: llm
|
40 |
operator:
|
|
|
50 |
python: ../operators/policy.py
|
51 |
inputs:
|
52 |
init: llm/init
|
53 |
+
reached_kitchen: planning/reached_kitchen
|
54 |
+
reached_living_room: planning/reached_living_room
|
55 |
outputs:
|
56 |
- go_to
|
57 |
- reloaded
|
|
|
68 |
queue_size: 1
|
69 |
outputs:
|
70 |
- control
|
71 |
+
- reached_kitchen
|
72 |
+
- reached_living_room
|
73 |
|
74 |
|
75 |
|
operators/llm_op.py
CHANGED
@@ -3,7 +3,7 @@ import pylcs
|
|
3 |
import os
|
4 |
import pyarrow as pa
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
-
|
7 |
|
8 |
import re
|
9 |
import time
|
@@ -142,6 +142,7 @@ class Operator:
|
|
142 |
dora_event,
|
143 |
send_output,
|
144 |
) -> DoraStatus:
|
|
|
145 |
if dora_event["type"] == "INPUT" and dora_event["id"] == "text":
|
146 |
input = dora_event["value"][0].as_py()
|
147 |
# Path to the current file
|
@@ -167,7 +168,14 @@ class Operator:
|
|
167 |
print("response: ", output, flush=True)
|
168 |
with open(path, "w") as file:
|
169 |
file.write(source_code)
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
send_output("init", pa.array([]))
|
172 |
|
173 |
## Stopping to liberate GPU space
|
@@ -222,7 +230,7 @@ if __name__ == "__main__":
|
|
222 |
[
|
223 |
{
|
224 |
"path": path,
|
225 |
-
"user_message": "
|
226 |
},
|
227 |
]
|
228 |
),
|
|
|
3 |
import os
|
4 |
import pyarrow as pa
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
import torch
|
7 |
|
8 |
import re
|
9 |
import time
|
|
|
142 |
dora_event,
|
143 |
send_output,
|
144 |
) -> DoraStatus:
|
145 |
+
global model, tokenizer
|
146 |
if dora_event["type"] == "INPUT" and dora_event["id"] == "text":
|
147 |
input = dora_event["value"][0].as_py()
|
148 |
# Path to the current file
|
|
|
168 |
print("response: ", output, flush=True)
|
169 |
with open(path, "w") as file:
|
170 |
file.write(source_code)
|
171 |
+
del model
|
172 |
+
del tokenizer
|
173 |
+
# model will still be on cache until its place is taken by other objects so also execute the below lines
|
174 |
+
import gc # garbage collect library
|
175 |
+
|
176 |
+
gc.collect()
|
177 |
+
torch.cuda.empty_cache()
|
178 |
+
time.sleep(9)
|
179 |
send_output("init", pa.array([]))
|
180 |
|
181 |
## Stopping to liberate GPU space
|
|
|
230 |
[
|
231 |
{
|
232 |
"path": path,
|
233 |
+
"user_message": "go to the living room, ask the model if there is people, if there is, say i'm going to go get coffee for you, then go to the kitchen, when you reach the kitchen, check with the model if there is a person and say can i have a coffee please, then wait 10 sec and go back to the living room",
|
234 |
},
|
235 |
]
|
236 |
),
|
operators/planning_op.py
CHANGED
@@ -2,7 +2,7 @@ import time
|
|
2 |
import numpy as np
|
3 |
import pyarrow as pa
|
4 |
from dora import DoraStatus
|
5 |
-
|
6 |
|
7 |
CAMERA_WIDTH = 960
|
8 |
CAMERA_HEIGHT = 540
|
@@ -100,31 +100,47 @@ class Operator:
|
|
100 |
|
101 |
if len(dora_event["value"]) > 0:
|
102 |
self.waypoints = dora_event["value"].to_numpy().reshape((-1, 2))
|
|
|
103 |
elif id == "position":
|
104 |
print("got position:", dora_event["value"], flush=True)
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
108 |
return DoraStatus.CONTINUE
|
|
|
109 |
if self.completed == False:
|
110 |
print("not completed", flush=True)
|
111 |
return DoraStatus.CONTINUE
|
112 |
-
value = dora_event["value"].to_numpy()
|
113 |
-
[x, y, z] = value
|
114 |
-
self.position = [x, y, z]
|
115 |
|
|
|
|
|
|
|
|
|
116 |
# Remove waypoints if completed
|
117 |
-
|
118 |
-
|
119 |
-
and np.linalg.norm(self.waypoints[0] - [x, y]) < 0.
|
120 |
):
|
121 |
-
self.waypoints = self.waypoints[1:]
|
122 |
-
print("removing waypoints", flush=True)
|
123 |
-
if len(self.waypoints) == 0:
|
124 |
print("goal reached", flush=True)
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
self.waypoints = None
|
127 |
return DoraStatus.CONTINUE
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
z = np.deg2rad(z)
|
130 |
self.tf = np.array([[np.cos(z), -np.sin(z)], [np.sin(z), np.cos(z)]])
|
@@ -156,7 +172,7 @@ class Operator:
|
|
156 |
[
|
157 |
{
|
158 |
"action": "gimbal",
|
159 |
-
"value": [
|
160 |
"count": self.count,
|
161 |
},
|
162 |
{
|
@@ -164,7 +180,7 @@ class Operator:
|
|
164 |
self.waypoints[0][0] - x,
|
165 |
self.waypoints[0][1] - y,
|
166 |
0.0, # -goal_angle,
|
167 |
-
0.
|
168 |
0.0, # 50,
|
169 |
],
|
170 |
"action": "control",
|
|
|
2 |
import numpy as np
|
3 |
import pyarrow as pa
|
4 |
from dora import DoraStatus
|
5 |
+
from constants import KITCHEN, LIVING_ROOM
|
6 |
|
7 |
CAMERA_WIDTH = 960
|
8 |
CAMERA_HEIGHT = 540
|
|
|
100 |
|
101 |
if len(dora_event["value"]) > 0:
|
102 |
self.waypoints = dora_event["value"].to_numpy().reshape((-1, 2))
|
103 |
+
|
104 |
elif id == "position":
|
105 |
print("got position:", dora_event["value"], flush=True)
|
106 |
+
value = dora_event["value"].to_numpy()
|
107 |
+
[x, y, z] = value
|
108 |
+
self.position = [x, y, z]
|
109 |
+
if self.image is None:
|
110 |
+
print("no image", flush=True)
|
111 |
return DoraStatus.CONTINUE
|
112 |
+
## No bounding box yet
|
113 |
if self.completed == False:
|
114 |
print("not completed", flush=True)
|
115 |
return DoraStatus.CONTINUE
|
|
|
|
|
|
|
116 |
|
117 |
+
if self.waypoints is None:
|
118 |
+
print("no waypoint", flush=True)
|
119 |
+
return DoraStatus.CONTINUE
|
120 |
+
# Set Waypoints to None if goal reached
|
121 |
# Remove waypoints if completed
|
122 |
+
elif (
|
123 |
+
self.waypoints.shape[0] == 1
|
124 |
+
and np.linalg.norm(self.waypoints[0] - np.array([x, y])) < 0.2
|
125 |
):
|
|
|
|
|
|
|
126 |
print("goal reached", flush=True)
|
127 |
+
goal = self.waypoints[0]
|
128 |
+
if np.linalg.norm(KITCHEN[-1] - goal) < 0.2:
|
129 |
+
send_output("reached_kitchen", pa.array(self.image.ravel()))
|
130 |
+
elif np.linalg.norm(LIVING_ROOM[-1] - goal) < 0.2:
|
131 |
+
send_output("reached_living_room", pa.array(self.image.ravel()))
|
132 |
+
else:
|
133 |
+
raise ValueError(
|
134 |
+
"Could not find goal reached: ", goal, "pos:", self.position
|
135 |
+
)
|
136 |
self.waypoints = None
|
137 |
return DoraStatus.CONTINUE
|
138 |
+
elif (
|
139 |
+
self.waypoints.size > 0
|
140 |
+
and np.linalg.norm(self.waypoints[0] - np.array([x, y])) < 0.1
|
141 |
+
):
|
142 |
+
self.waypoints = self.waypoints[1:]
|
143 |
+
print("removing waypoints", flush=True)
|
144 |
|
145 |
z = np.deg2rad(z)
|
146 |
self.tf = np.array([[np.cos(z), -np.sin(z)], [np.sin(z), np.cos(z)]])
|
|
|
172 |
[
|
173 |
{
|
174 |
"action": "gimbal",
|
175 |
+
"value": [10.0, goal_angle],
|
176 |
"count": self.count,
|
177 |
},
|
178 |
{
|
|
|
180 |
self.waypoints[0][0] - x,
|
181 |
self.waypoints[0][1] - y,
|
182 |
0.0, # -goal_angle,
|
183 |
+
0.8,
|
184 |
0.0, # 50,
|
185 |
],
|
186 |
"action": "control",
|
operators/plot.py
CHANGED
@@ -127,6 +127,15 @@ class Operator:
|
|
127 |
cv2.putText(
|
128 |
image, self.buffer, (20, 14 + 15 * 25), FONT, 0.5, (190, 250, 0), 2
|
129 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
i = 0
|
132 |
for text in self.submitted[::-1]:
|
|
|
127 |
cv2.putText(
|
128 |
image, self.buffer, (20, 14 + 15 * 25), FONT, 0.5, (190, 250, 0), 2
|
129 |
)
|
130 |
+
cv2.putText(
|
131 |
+
image,
|
132 |
+
f"pos: {self.position}",
|
133 |
+
(20, 20),
|
134 |
+
FONT,
|
135 |
+
0.5,
|
136 |
+
(190, 250, 100),
|
137 |
+
2,
|
138 |
+
)
|
139 |
|
140 |
i = 0
|
141 |
for text in self.submitted[::-1]:
|
operators/policy.py
CHANGED
@@ -10,6 +10,9 @@ KITCHEN = np.array([[0.0, -0.2], [-1.0, -0.3], [-2.0, -0.5]]).ravel()
|
|
10 |
|
11 |
## Policy Operator
|
12 |
class Operator:
|
|
|
|
|
|
|
13 |
def speak(self, text: str):
|
14 |
speak(text)
|
15 |
|
@@ -28,4 +31,5 @@ class Operator:
|
|
28 |
elif id == "reached_kitchen":
|
29 |
image = event["value"].to_numpy().reshape((540, 960, 3))
|
30 |
pass
|
|
|
31 |
return DoraStatus.CONTINUE
|
|
|
10 |
|
11 |
## Policy Operator
|
12 |
class Operator:
|
13 |
+
def __init__(self):
|
14 |
+
pass
|
15 |
+
|
16 |
def speak(self, text: str):
|
17 |
speak(text)
|
18 |
|
|
|
31 |
elif id == "reached_kitchen":
|
32 |
image = event["value"].to_numpy().reshape((540, 960, 3))
|
33 |
pass
|
34 |
+
|
35 |
return DoraStatus.CONTINUE
|
operators/robot.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from robomaster import robot
|
2 |
from typing import Callable, Optional
|
3 |
from dora import DoraStatus
|
4 |
|
@@ -26,6 +26,7 @@ class Operator:
|
|
26 |
self.position = np.array([0.0, 0.0, 0.0])
|
27 |
self.count = -1
|
28 |
self.event = None
|
|
|
29 |
|
30 |
def execute_backlog(self):
|
31 |
if len(self.backlog) > 0:
|
@@ -74,5 +75,12 @@ class Operator:
|
|
74 |
if len(self.backlog) == 0:
|
75 |
self.backlog += command
|
76 |
self.execute_backlog()
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
return DoraStatus.CONTINUE
|
|
|
1 |
+
from robomaster import robot, led
|
2 |
from typing import Callable, Optional
|
3 |
from dora import DoraStatus
|
4 |
|
|
|
26 |
self.position = np.array([0.0, 0.0, 0.0])
|
27 |
self.count = -1
|
28 |
self.event = None
|
29 |
+
self.rgb = [0, 0, 0]
|
30 |
|
31 |
def execute_backlog(self):
|
32 |
if len(self.backlog) > 0:
|
|
|
75 |
if len(self.backlog) == 0:
|
76 |
self.backlog += command
|
77 |
self.execute_backlog()
|
78 |
+
elif dora_event["id"] == "led":
|
79 |
+
[r, g, b] = dora_event["value"].to_numpy()
|
80 |
+
rgb = [r, g, b]
|
81 |
+
if rgb != self.rgb:
|
82 |
+
self.ep_robot.led.set_led(
|
83 |
+
comp=led.COMP_ALL, r=r, g=g, b=b, effect=led.EFFECT_ON
|
84 |
+
)
|
85 |
+
self.rgb = rgb
|
86 |
return DoraStatus.CONTINUE
|
operators/utils.py
CHANGED
@@ -82,7 +82,7 @@ def ask_vlm(image, instruction):
|
|
82 |
inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()}
|
83 |
|
84 |
generated_ids = model.generate(
|
85 |
-
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=
|
86 |
)
|
87 |
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
|
88 |
|
|
|
82 |
inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()}
|
83 |
|
84 |
generated_ids = model.generate(
|
85 |
+
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=50
|
86 |
)
|
87 |
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
|
88 |
|
operators/whisper_op.py
CHANGED
@@ -11,7 +11,7 @@ import sounddevice as sd
|
|
11 |
model = whisper.load_model("base")
|
12 |
|
13 |
SAMPLE_RATE = 16000
|
14 |
-
MAX_DURATION =
|
15 |
|
16 |
|
17 |
class Operator:
|
@@ -24,12 +24,13 @@ class Operator:
|
|
24 |
dora_event,
|
25 |
send_output,
|
26 |
) -> DoraStatus:
|
|
|
27 |
if dora_event["type"] == "INPUT":
|
28 |
## Check for keyboard event
|
29 |
with keyboard.Events() as events:
|
30 |
event = events.get(1.0)
|
31 |
if event is not None and event.key == Key.up:
|
32 |
-
|
33 |
## Microphone
|
34 |
audio_data = sd.rec(
|
35 |
int(SAMPLE_RATE * MAX_DURATION),
|
@@ -47,4 +48,11 @@ class Operator:
|
|
47 |
send_output(
|
48 |
"text", pa.array([result["text"]]), dora_event["metadata"]
|
49 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
return DoraStatus.CONTINUE
|
|
|
11 |
model = whisper.load_model("base")
|
12 |
|
13 |
SAMPLE_RATE = 16000
|
14 |
+
MAX_DURATION = 20
|
15 |
|
16 |
|
17 |
class Operator:
|
|
|
24 |
dora_event,
|
25 |
send_output,
|
26 |
) -> DoraStatus:
|
27 |
+
global model
|
28 |
if dora_event["type"] == "INPUT":
|
29 |
## Check for keyboard event
|
30 |
with keyboard.Events() as events:
|
31 |
event = events.get(1.0)
|
32 |
if event is not None and event.key == Key.up:
|
33 |
+
send_output("led", pa.array([0, 255, 0]))
|
34 |
## Microphone
|
35 |
audio_data = sd.rec(
|
36 |
int(SAMPLE_RATE * MAX_DURATION),
|
|
|
48 |
send_output(
|
49 |
"text", pa.array([result["text"]]), dora_event["metadata"]
|
50 |
)
|
51 |
+
send_output("led", pa.array([0, 0, 255]))
|
52 |
+
del model
|
53 |
+
|
54 |
+
import gc # garbage collect library
|
55 |
+
|
56 |
+
gc.collect()
|
57 |
+
|
58 |
return DoraStatus.CONTINUE
|