haixuantao
commited on
Commit
·
533dd7a
1
Parent(s):
293b414
Adding couple of working nodes
Browse files- graphs/dataflow_vlm_basic.yml +31 -22
- graphs/dataflow_vlm_policy.yml +58 -0
- operators/idefics2_op_demo.py +107 -0
- operators/llm_op.py +8 -10
- operators/policy.py +7 -10
- operators/robot_minimize.py +53 -11
graphs/dataflow_vlm_basic.yml
CHANGED
@@ -1,45 +1,54 @@
|
|
1 |
nodes:
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
python: ../operators/plot.py
|
6 |
inputs:
|
7 |
image: webcam/image
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
- id:
|
13 |
operator:
|
14 |
-
python: ../operators/
|
15 |
inputs:
|
16 |
image:
|
17 |
source: webcam/image
|
18 |
queue_size: 1
|
19 |
-
|
20 |
outputs:
|
21 |
-
-
|
|
|
22 |
|
23 |
-
- id:
|
24 |
-
|
25 |
-
|
|
|
26 |
inputs:
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
outputs:
|
29 |
- image
|
30 |
|
31 |
- id: whisper
|
32 |
-
|
33 |
-
|
34 |
inputs:
|
35 |
audio: dora/timer/millis/1000
|
36 |
outputs:
|
37 |
- text
|
38 |
|
39 |
-
- id:
|
40 |
operator:
|
41 |
-
python:
|
42 |
inputs:
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
1 |
nodes:
|
2 |
+
- id: plot
|
3 |
+
custom:
|
4 |
+
source: dora-rerun
|
|
|
5 |
inputs:
|
6 |
image: webcam/image
|
7 |
+
textlog_whisper: whisper/text
|
8 |
+
textlog_vlm: idefics2/speak
|
9 |
+
envs:
|
10 |
+
IMAGE_WIDTH: 1280
|
11 |
+
IMAGE_HEIGHT: 720
|
12 |
+
IMAGE_DEPTH: 3
|
13 |
+
RERUN_MEMORY_LIMIT: 10%
|
14 |
|
15 |
+
- id: idefics2
|
16 |
operator:
|
17 |
+
python: ../operators/idefics2_op_demo.py
|
18 |
inputs:
|
19 |
image:
|
20 |
source: webcam/image
|
21 |
queue_size: 1
|
22 |
+
text: whisper/text
|
23 |
outputs:
|
24 |
+
- speak
|
25 |
+
- control
|
26 |
|
27 |
+
- id: robot
|
28 |
+
custom:
|
29 |
+
source: /home/peter/miniconda3/envs/robomaster/bin/python
|
30 |
+
args: ../operators/robot_minimize.py
|
31 |
inputs:
|
32 |
+
control: idefics2/control
|
33 |
+
|
34 |
+
- id: webcam
|
35 |
+
custom:
|
36 |
+
source: ../operators/opencv_stream.py
|
37 |
outputs:
|
38 |
- image
|
39 |
|
40 |
- id: whisper
|
41 |
+
custom:
|
42 |
+
source: ../operators/whisper_op.py
|
43 |
inputs:
|
44 |
audio: dora/timer/millis/1000
|
45 |
outputs:
|
46 |
- text
|
47 |
|
48 |
+
- id: parler
|
49 |
operator:
|
50 |
+
python: ../operators/parler_op.py
|
51 |
inputs:
|
52 |
+
text:
|
53 |
+
source: idefics2/speak
|
54 |
+
queue_size: 1
|
graphs/dataflow_vlm_policy.yml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
nodes:
|
2 |
+
- id: plot
|
3 |
+
custom:
|
4 |
+
source: dora-rerun
|
5 |
+
inputs:
|
6 |
+
image: webcam/image
|
7 |
+
textlog_whisper: whisper/text
|
8 |
+
envs:
|
9 |
+
IMAGE_WIDTH: 1280
|
10 |
+
IMAGE_HEIGHT: 720
|
11 |
+
IMAGE_DEPTH: 3
|
12 |
+
RERUN_MEMORY_LIMIT: 10%
|
13 |
+
|
14 |
+
- id: policy
|
15 |
+
operator:
|
16 |
+
python: ../operators/policy.py
|
17 |
+
inputs:
|
18 |
+
init: llm/init
|
19 |
+
reached_kitchen: robot/reached_kitchen
|
20 |
+
reached_living_room: robot/reached_living_room
|
21 |
+
reached_office: robot/reached_office
|
22 |
+
outputs:
|
23 |
+
- go_to
|
24 |
+
|
25 |
+
- id: llm
|
26 |
+
operator:
|
27 |
+
python: ../operators/llm_op.py
|
28 |
+
inputs:
|
29 |
+
text: whisper/text
|
30 |
+
outputs:
|
31 |
+
- init
|
32 |
+
|
33 |
+
- id: robot
|
34 |
+
custom:
|
35 |
+
source: /home/peter/miniconda3/envs/robomaster/bin/python
|
36 |
+
args: ../operators/robot_minimize.py
|
37 |
+
inputs:
|
38 |
+
# control: idefics2/control
|
39 |
+
go_to: policy/go_to
|
40 |
+
outputs:
|
41 |
+
- reached_kitchen
|
42 |
+
- reached_living_room
|
43 |
+
- reached_office
|
44 |
+
|
45 |
+
- id: webcam
|
46 |
+
custom:
|
47 |
+
source: ../operators/opencv_stream.py
|
48 |
+
outputs:
|
49 |
+
- image
|
50 |
+
|
51 |
+
- id: whisper
|
52 |
+
custom:
|
53 |
+
source: ../operators/whisper_op.py
|
54 |
+
inputs:
|
55 |
+
audio: dora/timer/millis/1000
|
56 |
+
outputs:
|
57 |
+
- text
|
58 |
+
|
operators/idefics2_op_demo.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dora import DoraStatus
|
2 |
+
import pyarrow as pa
|
3 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq, AwqConfig
|
4 |
+
import torch
|
5 |
+
import gc
|
6 |
+
|
7 |
+
CAMERA_WIDTH = 1280
|
8 |
+
CAMERA_HEIGHT = 720
|
9 |
+
PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible")
|
10 |
+
BAD_WORDS_IDS = PROCESSOR.tokenizer(
|
11 |
+
["<image>", "<fake_token_around_image>"], add_special_tokens=False
|
12 |
+
).input_ids
|
13 |
+
EOS_WORDS_IDS = PROCESSOR.tokenizer(
|
14 |
+
"<end_of_utterance>", add_special_tokens=False
|
15 |
+
).input_ids + [PROCESSOR.tokenizer.eos_token_id]
|
16 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
17 |
+
"HuggingFaceM4/idefics2-tfrm-compatible-AWQ",
|
18 |
+
quantization_config=AwqConfig(
|
19 |
+
bits=4,
|
20 |
+
fuse_max_seq_len=4096,
|
21 |
+
modules_to_fuse={
|
22 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
23 |
+
"mlp": ["gate_proj", "up_proj", "down_proj"],
|
24 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
25 |
+
"use_alibi": False,
|
26 |
+
"num_attention_heads": 32,
|
27 |
+
"num_key_value_heads": 8,
|
28 |
+
"hidden_size": 4096,
|
29 |
+
},
|
30 |
+
),
|
31 |
+
trust_remote_code=True,
|
32 |
+
).to("cuda")
|
33 |
+
|
34 |
+
|
35 |
+
def reset_awq_cache(model):
|
36 |
+
"""
|
37 |
+
Simple method to reset the AWQ fused modules cache
|
38 |
+
"""
|
39 |
+
from awq.modules.fused.attn import QuantAttentionFused
|
40 |
+
|
41 |
+
for name, module in model.named_modules():
|
42 |
+
if isinstance(module, QuantAttentionFused):
|
43 |
+
module.start_pos = 0
|
44 |
+
|
45 |
+
|
46 |
+
def ask_vlm(image, instruction):
|
47 |
+
global model
|
48 |
+
prompts = [
|
49 |
+
"User:",
|
50 |
+
image,
|
51 |
+
f"{instruction}.<end_of_utterance>\n",
|
52 |
+
"Assistant:",
|
53 |
+
]
|
54 |
+
inputs = {k: torch.tensor(v).to("cuda") for k, v in PROCESSOR(prompts).items()}
|
55 |
+
|
56 |
+
generated_ids = model.generate(
|
57 |
+
**inputs,
|
58 |
+
bad_words_ids=BAD_WORDS_IDS,
|
59 |
+
max_new_tokens=25,
|
60 |
+
repetition_penalty=1.2,
|
61 |
+
)
|
62 |
+
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
|
63 |
+
reset_awq_cache(model)
|
64 |
+
|
65 |
+
gc.collect()
|
66 |
+
torch.cuda.empty_cache()
|
67 |
+
return generated_texts[0].split("\nAssistant: ")[1]
|
68 |
+
|
69 |
+
|
70 |
+
class Operator:
|
71 |
+
def __init__(self):
|
72 |
+
self.image = None
|
73 |
+
self.text = None
|
74 |
+
|
75 |
+
def on_event(
|
76 |
+
self,
|
77 |
+
dora_event,
|
78 |
+
send_output,
|
79 |
+
) -> DoraStatus:
|
80 |
+
if dora_event["type"] == "INPUT":
|
81 |
+
if dora_event["id"] == "image":
|
82 |
+
self.image = (
|
83 |
+
dora_event["value"]
|
84 |
+
.to_numpy()
|
85 |
+
.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
|
86 |
+
)
|
87 |
+
elif dora_event["id"] == "text":
|
88 |
+
self.text = dora_event["value"][0].as_py()
|
89 |
+
output = ask_vlm(self.image, self.text).lower()
|
90 |
+
send_output(
|
91 |
+
"speak",
|
92 |
+
pa.array([output]),
|
93 |
+
)
|
94 |
+
"""
|
95 |
+
if "sofa" in output:
|
96 |
+
send_output(
|
97 |
+
"control",
|
98 |
+
pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 50.0, 50.0]),
|
99 |
+
)
|
100 |
+
elif "back" in self.text:
|
101 |
+
send_output(
|
102 |
+
"control",
|
103 |
+
pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]),
|
104 |
+
)
|
105 |
+
"""
|
106 |
+
|
107 |
+
return DoraStatus.CONTINUE
|
operators/llm_op.py
CHANGED
@@ -5,6 +5,7 @@ import pyarrow as pa
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
import torch
|
7 |
|
|
|
8 |
import re
|
9 |
import time
|
10 |
|
@@ -136,6 +137,8 @@ def replace_code_in_source(source_code, replacement_block: str):
|
|
136 |
|
137 |
|
138 |
class Operator:
|
|
|
|
|
139 |
|
140 |
def on_event(
|
141 |
self,
|
@@ -168,18 +171,13 @@ class Operator:
|
|
168 |
print("response: ", output, flush=True)
|
169 |
with open(path, "w") as file:
|
170 |
file.write(source_code)
|
171 |
-
del model
|
172 |
-
del tokenizer
|
173 |
-
# model will still be on cache until its place is taken by other objects so also execute the below lines
|
174 |
-
import gc # garbage collect library
|
175 |
|
176 |
gc.collect()
|
177 |
torch.cuda.empty_cache()
|
178 |
-
time.sleep(
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
return DoraStatus.STOP
|
183 |
|
184 |
return DoraStatus.CONTINUE
|
185 |
|
@@ -230,7 +228,7 @@ if __name__ == "__main__":
|
|
230 |
[
|
231 |
{
|
232 |
"path": path,
|
233 |
-
"user_message": "go to the
|
234 |
},
|
235 |
]
|
236 |
),
|
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
import torch
|
7 |
|
8 |
+
import gc # garbage collect library
|
9 |
import re
|
10 |
import time
|
11 |
|
|
|
137 |
|
138 |
|
139 |
class Operator:
|
140 |
+
def __init__(self) -> None:
|
141 |
+
self.policy_init = False
|
142 |
|
143 |
def on_event(
|
144 |
self,
|
|
|
171 |
print("response: ", output, flush=True)
|
172 |
with open(path, "w") as file:
|
173 |
file.write(source_code)
|
|
|
|
|
|
|
|
|
174 |
|
175 |
gc.collect()
|
176 |
torch.cuda.empty_cache()
|
177 |
+
time.sleep(6)
|
178 |
+
if not self.policy_init:
|
179 |
+
send_output("init", pa.array([]))
|
180 |
+
self.policy_init = True
|
|
|
181 |
|
182 |
return DoraStatus.CONTINUE
|
183 |
|
|
|
228 |
[
|
229 |
{
|
230 |
"path": path,
|
231 |
+
"user_message": "go to the office, and then, say I know that you work hard, so I brought some a chocolate, wait for 10 seconds, and then play the office song and then go to the kitchen,",
|
232 |
},
|
233 |
]
|
234 |
),
|
operators/policy.py
CHANGED
@@ -1,32 +1,29 @@
|
|
1 |
import pyarrow as pa
|
2 |
from dora import DoraStatus
|
3 |
-
from utils import
|
4 |
from time import sleep
|
5 |
|
6 |
|
7 |
class Operator:
|
8 |
def __init__(self):
|
9 |
-
self.location = ["KITCHEN", "
|
10 |
-
|
11 |
-
|
12 |
-
def ask_model(self, image, text: str) -> str:
|
13 |
-
text = ask_vlm(image, text).lower()
|
14 |
-
return text
|
15 |
|
16 |
def speak(self, text: str):
|
17 |
speak(text)
|
18 |
|
|
|
|
|
|
|
19 |
def on_event(self, event: dict, send_output) -> DoraStatus:
|
20 |
if event["type"] == "INPUT":
|
21 |
id = event["id"]
|
22 |
# On initialization
|
23 |
if id == "init":
|
24 |
send_output("go_to", pa.array([""]))
|
25 |
-
elif id == "
|
26 |
-
image = event["value"].to_numpy().reshape((540, 960, 3))
|
27 |
pass
|
28 |
elif id == "reached_kitchen":
|
29 |
-
image = event["value"].to_numpy().reshape((540, 960, 3))
|
30 |
pass
|
31 |
|
32 |
return DoraStatus.CONTINUE
|
|
|
1 |
import pyarrow as pa
|
2 |
from dora import DoraStatus
|
3 |
+
from utils import speak, play
|
4 |
from time import sleep
|
5 |
|
6 |
|
7 |
class Operator:
|
8 |
def __init__(self):
|
9 |
+
self.location = ["KITCHEN", "OFFICE"]
|
10 |
+
self.music = ["office.mp3"]
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def speak(self, text: str):
|
13 |
speak(text)
|
14 |
|
15 |
+
def play(self, file: str):
|
16 |
+
play(file)
|
17 |
+
|
18 |
def on_event(self, event: dict, send_output) -> DoraStatus:
|
19 |
if event["type"] == "INPUT":
|
20 |
id = event["id"]
|
21 |
# On initialization
|
22 |
if id == "init":
|
23 |
send_output("go_to", pa.array([""]))
|
24 |
+
elif id == "reached_office":
|
|
|
25 |
pass
|
26 |
elif id == "reached_kitchen":
|
|
|
27 |
pass
|
28 |
|
29 |
return DoraStatus.CONTINUE
|
operators/robot_minimize.py
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
from robomaster import robot
|
2 |
from time import sleep
|
|
|
|
|
|
|
3 |
|
4 |
|
5 |
def wait(event):
|
@@ -12,19 +15,58 @@ assert ep_robot.initialize(conn_type="ap"), "Could not initialize ep_robot"
|
|
12 |
assert ep_robot.camera.start_video_stream(display=False), "Could not start video stream"
|
13 |
ep_robot.gimbal.recenter().wait_for_completed()
|
14 |
|
15 |
-
from dora import Node
|
16 |
|
17 |
node = Node()
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
for dora_event in node:
|
20 |
-
if dora_event["type"] == "INPUT":
|
21 |
[x, y, z, xy_speed, z_speed, pitch, yaw] = dora_event["value"].to_numpy()
|
22 |
-
print(dora_event["value"].to_numpy())
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from robomaster import robot
|
2 |
from time import sleep
|
3 |
+
from dora import Node
|
4 |
+
import numpy as np
|
5 |
+
import pyarrow as pa
|
6 |
|
7 |
|
8 |
def wait(event):
|
|
|
15 |
assert ep_robot.camera.start_video_stream(display=False), "Could not start video stream"
|
16 |
ep_robot.gimbal.recenter().wait_for_completed()
|
17 |
|
|
|
18 |
|
19 |
node = Node()
|
20 |
|
21 |
+
current_location = "HOME"
|
22 |
+
LOCATION = {
|
23 |
+
"HOME": {
|
24 |
+
"KITCHEN": np.array([[0.5, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0]]),
|
25 |
+
"OFFICE": np.array([[0.5, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0]]),
|
26 |
+
},
|
27 |
+
"KITCHEN": {
|
28 |
+
"OFFICE": np.array([[-0.5, 0.0, 0.0, 0.8, 0.0, 0.0, -180.0]]),
|
29 |
+
},
|
30 |
+
"OFFICE": {
|
31 |
+
"KITCHEN": np.array([[-0.5, 0.0, 0.0, 0.8, 0.0, 0.0, -180.0]]),
|
32 |
+
},
|
33 |
+
}
|
34 |
+
|
35 |
for dora_event in node:
|
36 |
+
if dora_event["type"] == "INPUT" and dora_event["id"] == "control":
|
37 |
[x, y, z, xy_speed, z_speed, pitch, yaw] = dora_event["value"].to_numpy()
|
38 |
+
print(dora_event["value"].to_numpy(), flush=True)
|
39 |
+
|
40 |
+
if any([pitch, yaw]):
|
41 |
+
event = ep_robot.gimbal.moveto(
|
42 |
+
pitch=pitch, yaw=yaw, pitch_speed=60.0, yaw_speed=50.0
|
43 |
+
)
|
44 |
+
wait(event)
|
45 |
+
sleep(2)
|
46 |
+
if any([x, y, z]):
|
47 |
+
event = ep_robot.chassis.move(
|
48 |
+
x=x, y=y, z=z, xy_speed=xy_speed, z_speed=z_speed
|
49 |
+
)
|
50 |
+
wait(event)
|
51 |
+
sleep(6)
|
52 |
+
if dora_event["type"] == "INPUT" and dora_event["id"] == "go_to":
|
53 |
+
destination = dora_event["value"][0].as_py()
|
54 |
+
commands = LOCATION[current_location][destination]
|
55 |
+
for command in commands:
|
56 |
+
|
57 |
+
[x, y, z, xy_speed, z_speed, pitch, yaw] = command
|
58 |
+
|
59 |
+
if any([pitch, yaw]):
|
60 |
+
event = ep_robot.gimbal.moveto(
|
61 |
+
pitch=pitch, yaw=yaw, pitch_speed=60.0, yaw_speed=50.0
|
62 |
+
)
|
63 |
+
wait(event)
|
64 |
+
sleep(2)
|
65 |
+
if any([x, y, z]):
|
66 |
+
event = ep_robot.chassis.move(
|
67 |
+
x=x, y=y, z=z, xy_speed=xy_speed, z_speed=z_speed
|
68 |
+
)
|
69 |
+
wait(event)
|
70 |
+
sleep(3)
|
71 |
+
node.send_output(f"reached_{destination.lower()}", pa.array([]))
|
72 |
+
current_location = destination
|