haixuantao
commited on
Commit
·
3c8b0eb
1
Parent(s):
1646f18
Fixing multiples small bugs
Browse files- graphs/dataflow_robot_vlm_minimize.yml +9 -1
- operators/parler_op.py +12 -6
- operators/robot_minimize.py +2 -2
- operators/whisper_op.py +18 -7
graphs/dataflow_robot_vlm_minimize.yml
CHANGED
@@ -11,6 +11,7 @@ nodes:
|
|
11 |
image:
|
12 |
source: webcam/image
|
13 |
queue_size: 1
|
|
|
14 |
outputs:
|
15 |
- speak
|
16 |
- control
|
@@ -31,4 +32,11 @@ nodes:
|
|
31 |
operator:
|
32 |
python: ../operators/plot.py
|
33 |
inputs:
|
34 |
-
image: webcam/image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
image:
|
12 |
source: webcam/image
|
13 |
queue_size: 1
|
14 |
+
text: whisper/text
|
15 |
outputs:
|
16 |
- speak
|
17 |
- control
|
|
|
32 |
operator:
|
33 |
python: ../operators/plot.py
|
34 |
inputs:
|
35 |
+
image: webcam/image
|
36 |
+
- id: whisper
|
37 |
+
operator:
|
38 |
+
python: ../operators/whisper_op.py
|
39 |
+
inputs:
|
40 |
+
audio: dora/timer/millis/1000
|
41 |
+
outputs:
|
42 |
+
- text
|
operators/parler_op.py
CHANGED
@@ -5,14 +5,14 @@ import pygame
|
|
5 |
from dora import DoraStatus
|
6 |
|
7 |
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
8 |
-
"parler-tts
|
9 |
).to("cuda:0")
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained("parler-tts
|
11 |
|
12 |
pygame.mixer.init()
|
13 |
|
14 |
input_ids = tokenizer(
|
15 |
-
"
|
16 |
return_tensors="pt",
|
17 |
).input_ids.to("cuda:0")
|
18 |
|
@@ -25,8 +25,8 @@ class Operator:
|
|
25 |
):
|
26 |
if dora_event["type"] == "INPUT":
|
27 |
generation = model.generate(
|
28 |
-
max_new_tokens=300,
|
29 |
input_ids=input_ids,
|
|
|
30 |
prompt_input_ids=tokenizer(
|
31 |
dora_event["value"][0].as_py(), return_tensors="pt"
|
32 |
).input_ids.to("cuda:0"),
|
@@ -38,9 +38,15 @@ class Operator:
|
|
38 |
model.config.sampling_rate,
|
39 |
)
|
40 |
|
41 |
-
while pygame.mixer.get_busy():
|
42 |
-
pass
|
43 |
pygame.mixer.music.load(f"parler_tts_out.wav")
|
44 |
pygame.mixer.music.play()
|
|
|
|
|
45 |
|
46 |
return DoraStatus.CONTINUE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from dora import DoraStatus
|
6 |
|
7 |
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
8 |
+
"ylacombe/parler-tts-mini-jenny-30H"
|
9 |
).to("cuda:0")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("ylacombe/parler-tts-mini-jenny-30H")
|
11 |
|
12 |
pygame.mixer.init()
|
13 |
|
14 |
input_ids = tokenizer(
|
15 |
+
"Jenny delivers her words quite expressively, in a very confined sounding environment with clear audio quality.",
|
16 |
return_tensors="pt",
|
17 |
).input_ids.to("cuda:0")
|
18 |
|
|
|
25 |
):
|
26 |
if dora_event["type"] == "INPUT":
|
27 |
generation = model.generate(
|
|
|
28 |
input_ids=input_ids,
|
29 |
+
min_new_tokens=100,
|
30 |
prompt_input_ids=tokenizer(
|
31 |
dora_event["value"][0].as_py(), return_tensors="pt"
|
32 |
).input_ids.to("cuda:0"),
|
|
|
38 |
model.config.sampling_rate,
|
39 |
)
|
40 |
|
|
|
|
|
41 |
pygame.mixer.music.load(f"parler_tts_out.wav")
|
42 |
pygame.mixer.music.play()
|
43 |
+
while pygame.mixer.get_busy():
|
44 |
+
pass
|
45 |
|
46 |
return DoraStatus.CONTINUE
|
47 |
+
|
48 |
+
|
49 |
+
# op = Operator()
|
50 |
+
# import pyarrow as pa
|
51 |
+
|
52 |
+
# op.on_event({"type": "INPUT", "value": pa.array(["Hello, how are you?"])}, None)
|
operators/robot_minimize.py
CHANGED
@@ -21,10 +21,10 @@ for dora_event in node:
|
|
21 |
[x, y, z, xy_speed, z_speed, pitch, yaw] = dora_event["value"].to_numpy()
|
22 |
print(dora_event["value"].to_numpy())
|
23 |
event = ep_robot.gimbal.moveto(
|
24 |
-
pitch=pitch, yaw=yaw, pitch_speed=
|
25 |
)
|
26 |
wait(event)
|
27 |
-
sleep(
|
28 |
event = ep_robot.chassis.move(x=x, y=y, z=z, xy_speed=xy_speed, z_speed=z_speed)
|
29 |
wait(event)
|
30 |
sleep(6)
|
|
|
21 |
[x, y, z, xy_speed, z_speed, pitch, yaw] = dora_event["value"].to_numpy()
|
22 |
print(dora_event["value"].to_numpy())
|
23 |
event = ep_robot.gimbal.moveto(
|
24 |
+
pitch=pitch, yaw=yaw, pitch_speed=60.0, yaw_speed=50.0
|
25 |
)
|
26 |
wait(event)
|
27 |
+
sleep(2)
|
28 |
event = ep_robot.chassis.move(x=x, y=y, z=z, xy_speed=xy_speed, z_speed=z_speed)
|
29 |
wait(event)
|
30 |
sleep(6)
|
operators/whisper_op.py
CHANGED
@@ -4,14 +4,17 @@ from pynput import keyboard
|
|
4 |
from pynput.keyboard import Key
|
5 |
from dora import DoraStatus
|
6 |
|
|
|
7 |
import numpy as np
|
8 |
import pyarrow as pa
|
9 |
import sounddevice as sd
|
|
|
10 |
|
11 |
model = whisper.load_model("base")
|
12 |
|
13 |
SAMPLE_RATE = 16000
|
14 |
-
MAX_DURATION =
|
|
|
15 |
|
16 |
|
17 |
class Operator:
|
@@ -19,6 +22,9 @@ class Operator:
|
|
19 |
Transforming Speech to Text using OpenAI Whisper model
|
20 |
"""
|
21 |
|
|
|
|
|
|
|
22 |
def on_event(
|
23 |
self,
|
24 |
dora_event,
|
@@ -30,10 +36,17 @@ class Operator:
|
|
30 |
with keyboard.Events() as events:
|
31 |
event = events.get(1.0)
|
32 |
if event is not None and event.key == Key.up:
|
33 |
-
send_output("led", pa.array([0, 255, 0]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
## Microphone
|
35 |
audio_data = sd.rec(
|
36 |
-
int(SAMPLE_RATE *
|
37 |
samplerate=SAMPLE_RATE,
|
38 |
channels=1,
|
39 |
dtype=np.int16,
|
@@ -48,11 +61,9 @@ class Operator:
|
|
48 |
send_output(
|
49 |
"text", pa.array([result["text"]]), dora_event["metadata"]
|
50 |
)
|
51 |
-
send_output("led", pa.array([0, 0, 255]))
|
52 |
-
del model
|
53 |
-
|
54 |
-
import gc # garbage collect library
|
55 |
|
56 |
gc.collect()
|
|
|
57 |
|
58 |
return DoraStatus.CONTINUE
|
|
|
4 |
from pynput.keyboard import Key
|
5 |
from dora import DoraStatus
|
6 |
|
7 |
+
import torch
|
8 |
import numpy as np
|
9 |
import pyarrow as pa
|
10 |
import sounddevice as sd
|
11 |
+
import gc # garbage collect library
|
12 |
|
13 |
model = whisper.load_model("base")
|
14 |
|
15 |
SAMPLE_RATE = 16000
|
16 |
+
MAX_DURATION = 10
|
17 |
+
MIN_DURATION = 6
|
18 |
|
19 |
|
20 |
class Operator:
|
|
|
22 |
Transforming Speech to Text using OpenAI Whisper model
|
23 |
"""
|
24 |
|
25 |
+
def __init__(self) -> None:
|
26 |
+
self.policy_init = False
|
27 |
+
|
28 |
def on_event(
|
29 |
self,
|
30 |
dora_event,
|
|
|
36 |
with keyboard.Events() as events:
|
37 |
event = events.get(1.0)
|
38 |
if event is not None and event.key == Key.up:
|
39 |
+
# send_output("led", pa.array([0, 255, 0]))
|
40 |
+
|
41 |
+
if self.policy_init == False:
|
42 |
+
self.policy_init = True
|
43 |
+
duration = MAX_DURATION
|
44 |
+
else:
|
45 |
+
duration = MIN_DURATION
|
46 |
+
|
47 |
## Microphone
|
48 |
audio_data = sd.rec(
|
49 |
+
int(SAMPLE_RATE * duration),
|
50 |
samplerate=SAMPLE_RATE,
|
51 |
channels=1,
|
52 |
dtype=np.int16,
|
|
|
61 |
send_output(
|
62 |
"text", pa.array([result["text"]]), dora_event["metadata"]
|
63 |
)
|
64 |
+
# send_output("led", pa.array([0, 0, 255]))
|
|
|
|
|
|
|
65 |
|
66 |
gc.collect()
|
67 |
+
torch.cuda.empty_cache()
|
68 |
|
69 |
return DoraStatus.CONTINUE
|