dora-idefics2 / operators /planning_op.py
haixuantao's picture
Adding policy node for controlling the robot
fe79d42
raw
history blame
7.1 kB
import time
import numpy as np
import pyarrow as pa
from dora import DoraStatus
GOAL = np.array([10, 20])
HOME_TO_KITCHEN = np.array([[0.5, 0], [0.5, -5.0], [1.0, 7.0]])
KITCHEN_TO_HOME = np.array([[2.0, 0.0], [0.0, 0.0]])
CAMERA_WIDTH = 960
CAMERA_HEIGHT = 540
def check_clear_road(bboxes, image_width, goal_x):
"""
Find the x-coordinate of the midpoint of the largest gap along the x-axis where no bounding boxes overlap.
Parameters:
- bboxes (np.array): A numpy array where each row represents a bounding box with
the format [min_x, min_y, max_x, max_y, confidence, label].
- image_width (int): The width of the image in pixels.
Returns:
- int: The x-coordinate of the midpoint of the largest gap where no bounding boxes overlap.
"""
if bboxes.size == 0:
# No bounding boxes, return the midpoint of the image as the largest gap
return goal_x
events = []
for bbox in bboxes:
min_x, max_x = bbox[0], bbox[2]
events.append((min_x, "enter"))
events.append((max_x, "exit"))
# Include image boundaries as part of the events
events.append(
(0, "exit")
) # Start of the image, considered an 'exit' point for logic simplicity
events.append(
(image_width, "enter")
) # End of the image, considered an 'enter' point
# Sort events, with exits before enters at the same position to ensure gap calculation correctness
events.sort(key=lambda x: (x[0], x[1] == "enter"))
# Sweep line algorithm to find the largest gap
current_boxes = 1
last_x = 0
largest_gap = 0
gap_start_x = None
largest_gap_mid = None # Midpoint of the largest gap
for x, event_type in events:
if current_boxes == 0 and gap_start_x is not None:
# Calculate gap
gap = x - gap_start_x
gap_end_x = gap_start_x + x
if goal_x < gap_end_x and goal_x > gap_start_x:
return True
elif goal_x < gap_start_x:
return False
if event_type == "enter":
current_boxes += 1
if current_boxes == 1:
gap_start_x = None # No longer in a gap
elif event_type == "exit":
current_boxes -= 1
if current_boxes == 0:
gap_start_x = x # Start of a potential gap
return False
class Operator:
def __init__(self):
self.bboxs = None
self.time = time.time()
self.position = [0, 0, 0]
self.waypoints = None
self.tf = np.array([[1, 0], [0, 1]])
self.count = 0
self.completed = True
self.image = None
def on_event(
self,
dora_event: dict,
send_output,
) -> DoraStatus:
global POSITION_GOAL, GIMBAL_GOAL
if dora_event["type"] == "INPUT":
id = dora_event["id"]
if id == "tick":
self.time = time.time()
elif id == "image":
value = dora_event["value"].to_numpy()
self.image = value.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
elif id == "control_reply":
value = dora_event["value"].to_numpy()[0]
if value == self.count:
self.completed = True
elif id == "set_goal":
print("got goal:", dora_event["value"], flush=True)
if len(dora_event["value"]) > 0:
self.waypoints = dora_event["value"].to_numpy().reshape((-1, 2))
elif id == "position":
## No bounding box yet
if self.waypoints is None or len(self.waypoints) == 0:
print("no waypoint", flush=True)
return DoraStatus.CONTINUE
if self.completed == False:
print("not completed", flush=True)
return DoraStatus.CONTINUE
value = dora_event["value"].to_numpy()
[x, y, z] = value
self.position = [x, y, z]
# Remove waypoints if completed
if (
len(self.waypoints) > 0
and np.linalg.norm(self.waypoints[0] - [x, y]) < 0.2
):
self.waypoints = self.waypoints[1:]
print("removing waypoints", flush=True)
if len(self.waypoints) == 0:
print("no waypoint", flush=True)
send_output("goal_reached", pa.array(self.image.ravel()))
return DoraStatus.CONTINUE
z = np.deg2rad(z)
self.tf = np.array([[np.cos(z), -np.sin(z)], [np.sin(z), np.cos(z)]])
goal = self.tf.dot(self.waypoints[0])
goal_camera_x = (
CAMERA_WIDTH * np.arctan2(goal[1], goal[0]) / np.pi
) + CAMERA_WIDTH / 2
goal_angle = np.arctan2(goal[1], goal[0]) * 180 / np.pi
print(
"position",
[x, y],
"goal:",
goal,
"Goal angle: ",
np.arctan2(goal[1], goal[0]) * 180 / np.pi,
"z: ",
np.rad2deg(z),
"x: ",
goal_camera_x,
"count: ",
self.count,
flush=True,
)
if True: # check_clear_road(self.bboxs, CAMERA_WIDTH, goal_camera_x):
self.count += 1
self.completed = False
send_output(
"control",
pa.array(
[
{
"action": "gimbal",
"value": [0.0, goal_angle],
"count": self.count,
},
# {
# "value": [
# 0.0,
# 0.0,
# -goal_angle,
# 0.0,
# 50,
# ],
# "action": "control",
# },
{
"value": [
goal[0],
goal[1],
0.0, # -goal_angle,
0.6,
0.0, # 50,
],
"action": "control",
},
]
),
dora_event["metadata"],
)
return DoraStatus.CONTINUE