File size: 5,430 Bytes
3b8e506
8abeff0
 
 
 
 
 
 
61c68fb
 
8abeff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c68fb
3b8e506
8abeff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50cf2ed
8abeff0
 
 
 
 
 
 
 
 
b1d8188
 
8abeff0
 
 
 
 
 
 
 
 
 
 
 
b1d8188
8abeff0
 
 
b1d8188
 
 
 
 
 
8abeff0
 
b1d8188
 
 
 
8abeff0
 
 
 
 
b1d8188
8abeff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
annotations_creators:
- machine-generated
- crowdsourced
- found
language_creators:
- machine-generated
- crowdsourced
language: []
license:
- mit
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
- extended|squad
- extended|race
- extended|newsqa
- extended|qamr
- extended|movieQA
task_categories:
- text2text-generation
task_ids:
- text-simplification
pretty_name: QA2D
---

# Dataset Card for QA2D

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** https://worksheets.codalab.org/worksheets/0xd4ebc52cebb84130a07cbfe81597aaf0/
- **Repository:** https://github.com/kelvinguu/qanli
- **Paper:** https://arxiv.org/abs/1809.02922
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]

### Dataset Summary

Existing datasets for natural language inference (NLI) have propelled research on language understanding. We propose a new method for automatically deriving NLI datasets from the growing abundance of large-scale question answering datasets. Our approach hinges on learning a sentence transformation model which converts question-answer pairs into their declarative forms. Despite being primarily trained on a single QA dataset, we show that it can be successfully applied to a variety of other QA resources. Using this system, we automatically derive a new freely available dataset of over 500k NLI examples (QA-NLI), and show that it exhibits a wide range of inference phenomena rarely seen in previous NLI datasets.

This Question to Declarative Sentence (QA2D) Dataset contains 86k question-answer pairs and their manual transformation into declarative sentences. 95% of question answer pairs come from SQuAD (Rajkupar et al., 2016) and the remaining 5% come from four other question answering datasets.

### Supported Tasks and Leaderboards

[Needs More Information]

### Languages

en

## Dataset Structure

### Data Instances

See below.

### Data Fields

- `dataset`: lowercased name of dataset (movieqa, newsqa, qamr, race, squad)
- `example_uid`: unique id of example within dataset (there are examples with the same uids from different datasets, so the combination of dataset + example_uid should be used for unique indexing)
- `question`: tokenized (space-separated) question from the source QA dataset
- `answer`: tokenized (space-separated) answer span from the source QA dataset
- `turker_answer`: tokenized (space-separated) answer sentence collected from MTurk
- `rule-based`: tokenized (space-separated) answer sentence, generated by the rule-based model

### Data Splits
| Dataset Split | Number of Instances in Split |
| ------------- |----------------------------- |
| Train         | 60,710                       |
| Dev           | 10,344                       |

## Dataset Creation

### Curation Rationale

This Question to Declarative Sentence (QA2D) Dataset contains 86k question-answer pairs and their manual transformation into declarative sentences. 95% of question answer pairs come from SQuAD (Rajkupar et al., 2016) and the remaining 5% come from four other question answering datasets.

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

[Needs More Information]

### Citation Information

@article{DBLP:journals/corr/abs-1809-02922,
  author    = {Dorottya Demszky and
               Kelvin Guu and
               Percy Liang},
  title     = {Transforming Question Answering Datasets Into Natural Language Inference
               Datasets},
  journal   = {CoRR},
  volume    = {abs/1809.02922},
  year      = {2018},
  url       = {http://arxiv.org/abs/1809.02922},
  eprinttype = {arXiv},
  eprint    = {1809.02922},
  timestamp = {Fri, 05 Oct 2018 11:34:52 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1809-02922.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}