File size: 9,741 Bytes
79f266c 16e1eec 79f266c 16e1eec 79f266c 16e1eec 79f266c 16e1eec 79f266c 16e1eec 79f266c 16e1eec 79f266c 16e1eec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# Sources:
# - https://github.com/NVIDIA/modulus-sym/blob/main/examples/super_resolution/jhtdb_utils.py
# - https://docs.nvidia.com/deeplearning/modulus/modulus-v2209/user_guide/intermediate/turbulence_super_resolution.html
# - https://arxiv.org/abs/2310.02299
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import json
from jsonargparse import CLI
import pandas as pd
import pyJHTDB
import pyJHTDB.dbinfo
from tqdm import tqdm
from pathlib import Path
from itertools import chain
import zipfile
import logging
from tenacity import retry, stop_after_attempt, wait_fixed
logging.basicConfig(level=logging.INFO)
def get_filename(
time_step: int,
start: np.ndarray, # [x, y, z]
end: np.ndarray, # [x, y, z]
step: np.ndarray, # [x, y, z]
filter_width: int,
):
"""Serializes jhtdb params into a filename."""
return "{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}_{8}_{9}_{10}.npy".format(
time_step,
start[0],
start[1],
start[2],
end[0],
end[1],
end[2],
step[0],
step[1],
step[2],
filter_width,
)
@retry(wait=wait_fixed(2), stop=stop_after_attempt(3))
def download_jhtdb(
loader: pyJHTDB.libJHTDB,
time_step: int,
start: np.ndarray,
end: np.ndarray,
step: np.ndarray,
filter_width: int,
path: Path,
dataset: str = "isotropic1024coarse",
field: str = "u",
):
"""
:param loader: pyJHTDB.libJHTDB object
:param time_step: time step to download
:param start: start [x, y, z] of the cutout
:param end: end [x, y, z] of the cutout
:param step: step size of the cutout
:param filter_width: filter width of the cutout
:param path: path to save the data
:param dataset: dataset to download from. Default is "isotropic1024coarse"
:param field: velocity ("u") or pressure ("p") field
Note that retrying doesn't affect the random seed,
as all the params have been fixed beforehand.
"""
if not path.exists():
results: np.ndarray = loader.getCutout(
data_set=dataset,
field=field,
time_step=time_step,
start=start,
end=end,
step=step,
filter_width=filter_width,
)
if results is None:
logging.error(
f"time_step: {time_step}, "
f"start: {start.tolist()}, "
f"end: {end.tolist()}, "
f"step: {step.tolist()}, "
f"filter_width: {filter_width}"
)
raise Exception("Could not download data from JHTDB")
# Move the [x, y, z] dimensions to the front
results = np.rollaxis(results, -1, 0)
np.save(path, results)
return np.load(path)
def get_params(
total_samples: int,
domain_size: int,
lr_factor: int,
time_range: list[int],
window_size: int,
) -> tuple[dict, dict]:
dt = np.arange(window_size) - window_size // 2
time_steps_hr = np.random.randint(time_range[0], time_range[1], size=total_samples)
# reshape time_steps to (total_samples, len(dt)) so that for each i we can get time_steps[i] + dt[j]
time_steps_lr = np.repeat(time_steps_hr[:, np.newaxis], len(dt), axis=1) + dt
# time_steps.shape = [total_samples, window_size]
starts = np.random.randint(1, 1024 - domain_size, size=(total_samples, 3))
ends = starts + domain_size - 1
all_params_lr = [
[
{
"time_step": time_steps_lr[i, j],
"start": starts[i],
"end": ends[i],
"step": np.full(3, lr_factor, dtype=int),
"filter_width": lr_factor,
}
for j in range(len(dt))
]
for i in range(total_samples)
]
all_params_hr = [
{
"time_step": time_steps_hr[i],
"start": starts[i],
"end": ends[i],
"step": np.ones(3, dtype=int),
"filter_width": 1,
}
for i in range(total_samples)
]
return all_params_lr, all_params_hr
def download_generic(
total_samples: int,
domain_size: int,
lr_factor: int,
time_range: tuple[int, int],
window_size: int,
tmp_data_dir: Path,
token: str,
):
"""Download all the data from the JHTDB database."""
# initialize runner
lJHTDB = pyJHTDB.libJHTDB()
lJHTDB.initialize()
lJHTDB.add_token(token)
tmp_data_dir.mkdir(parents=True, exist_ok=True)
all_params_lr, all_params_hr = get_params(
total_samples, domain_size, lr_factor, time_range, window_size
)
# add path to all the params
all_params_hr = [
dict(p, path=tmp_data_dir / get_filename(**p)) for p in all_params_hr
]
all_params_lr = [
[dict(p, path=tmp_data_dir / get_filename(**p)) for p in lr]
for lr in all_params_lr
]
# all_params_lr.shape = [total_samples, window_size]
# all_params_hr.shape = [total_samples]
# flatten nested params
all_params = list(chain.from_iterable(all_params_lr)) + all_params_hr
# This could be parallelizable, but it is non-trivial to get around the rate limiting.
for p in tqdm(all_params):
download_jhtdb(loader=lJHTDB, **p)
return all_params_lr, all_params_hr, all_params
def make_jhtdb_dataset(
name: str,
total_samples: int = 128,
train_split: float = 0.8,
val_split: float = 0.1,
test_split: float = 0.1,
domain_size: int = 64,
lr_factor: int = 4,
root: Path = Path("dataset/jhtdb"),
time_range: tuple[int, int] = (2, 1023),
window_size: int = 3,
seed: int = 123,
token: str = "edu.jhu.pha.turbulence.testing-201311",
) -> tuple[np.ndarray, np.ndarray]:
"""Creates low and high res dataset from JHTDB database.
Where:
low_res.shape = [nr_samples, 3, domain_size / lr_factor, domain_size / lr_factor, domain_size / lr_factor]
high_res.shape = [nr_samples, 3, domain_size, domain_size, domain_size]
And 3 corresponds to the x, y, z components of the velocity field.
Make a dataset from the JHTDB database.
:param: name: name of the dataset
:param: total_samples: total number of samples to generate
:param: train_split: percentage of samples to use for training
:param: val_split: percentage of samples to use for validation
:param: test_split: percentage of samples to use for testing
:param: domain_size: size of the domain to generate
:param: lr_factor: factor to downsample the data
:param: root: root directory to store the dataset
:param: time_range: range of time steps to sample from
:param: seed: seed to generate the dataset
:param: window_size: size of the window to sample from
:param: token: token to access the JHTDB database
:return: tuple of low res and high res data
"""
assert window_size % 2 == 1, "Window size must be odd"
assert time_range[0] - window_size // 2 >= 1, "Time step out of range"
assert time_range[1] + window_size // 2 <= 1024, "Time step out of range"
assert time_range[0] >= 1 and time_range[1] <= 1024, "Time step out of range"
np.random.seed(seed)
# download all the data
tmp_data_dir = root / "tmp"
all_params_lr, all_params_hr, _ = download_generic(
total_samples,
domain_size,
lr_factor,
time_range,
window_size,
tmp_data_dir,
token,
)
assert len(all_params_lr) == len(all_params_hr), "Length mismatch"
# split the data
cur_root = root / name
cur_root.mkdir(parents=True, exist_ok=True)
splits_ratios = [("train", train_split), ("val", val_split), ("test", test_split)]
for split, split_ratio in splits_ratios:
# split data
split_dir = cur_root / split
split_params_lr = all_params_lr[: int(total_samples * split_ratio)]
split_params_hr = all_params_hr[: int(total_samples * split_ratio)]
# compress all the data to a zip
split_paths = [
p["path"]
for p in split_params_hr + list(chain.from_iterable(split_params_lr))
]
with zipfile.ZipFile(cur_root / f"{split}.zip", "w") as z:
for p in split_paths:
z.write(p, p.name)
# create metadata
metadata = []
for lr, hr in zip(split_params_lr, split_params_hr):
metadata.append(
{
"time_step": hr["time_step"],
"window_size": window_size,
"sx": hr["start"][0],
"sy": hr["start"][1],
"sz": hr["start"][2],
"ex": hr["end"][0],
"ey": hr["end"][1],
"ez": hr["end"][2],
"lr_factor": lr_factor,
"hr_path": str(split_dir / hr["path"].name),
"lr_paths": json.dumps(
[str(split_dir / p["path"].name) for p in lr]
),
}
)
metadata_df = pd.DataFrame(metadata)
metadata_df.to_csv(cur_root / f"metadata_{split}.csv", index=False)
if __name__ == "__main__":
CLI(make_jhtdb_dataset)
|