File size: 9,741 Bytes
79f266c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16e1eec
 
 
 
 
 
 
 
 
 
 
79f266c
 
 
 
16e1eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79f266c
16e1eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79f266c
 
 
16e1eec
 
 
 
 
 
 
 
 
 
 
 
79f266c
 
 
 
 
 
 
16e1eec
79f266c
 
16e1eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79f266c
 
 
16e1eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Sources:
# - https://github.com/NVIDIA/modulus-sym/blob/main/examples/super_resolution/jhtdb_utils.py
# - https://docs.nvidia.com/deeplearning/modulus/modulus-v2209/user_guide/intermediate/turbulence_super_resolution.html
# - https://arxiv.org/abs/2310.02299
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import json
from jsonargparse import CLI
import pandas as pd

import pyJHTDB
import pyJHTDB.dbinfo
from tqdm import tqdm
from pathlib import Path
from itertools import chain
import zipfile
import logging
from tenacity import retry, stop_after_attempt, wait_fixed

logging.basicConfig(level=logging.INFO)


def get_filename(
    time_step: int,
    start: np.ndarray,  # [x, y, z]
    end: np.ndarray,  # [x, y, z]
    step: np.ndarray,  # [x, y, z]
    filter_width: int,
):
    """Serializes jhtdb params into a filename."""
    return "{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}_{8}_{9}_{10}.npy".format(
        time_step,
        start[0],
        start[1],
        start[2],
        end[0],
        end[1],
        end[2],
        step[0],
        step[1],
        step[2],
        filter_width,
    )


@retry(wait=wait_fixed(2), stop=stop_after_attempt(3))
def download_jhtdb(
    loader: pyJHTDB.libJHTDB,
    time_step: int,
    start: np.ndarray,
    end: np.ndarray,
    step: np.ndarray,
    filter_width: int,
    path: Path,
    dataset: str = "isotropic1024coarse",
    field: str = "u",
):
    """
    :param loader: pyJHTDB.libJHTDB object
    :param time_step: time step to download
    :param start: start [x, y, z] of the cutout
    :param end: end [x, y, z] of the cutout
    :param step: step size of the cutout
    :param filter_width: filter width of the cutout
    :param path: path to save the data
    :param dataset: dataset to download from. Default is "isotropic1024coarse"
    :param field: velocity ("u") or pressure ("p") field

    Note that retrying doesn't affect the random seed,
    as all the params have been fixed beforehand.
    """
    if not path.exists():
        results: np.ndarray = loader.getCutout(
            data_set=dataset,
            field=field,
            time_step=time_step,
            start=start,
            end=end,
            step=step,
            filter_width=filter_width,
        )
        if results is None:
            logging.error(
                f"time_step: {time_step}, "
                f"start: {start.tolist()}, "
                f"end: {end.tolist()}, "
                f"step: {step.tolist()}, "
                f"filter_width: {filter_width}"
            )
            raise Exception("Could not download data from JHTDB")
        # Move the [x, y, z] dimensions to the front
        results = np.rollaxis(results, -1, 0)
        np.save(path, results)
    return np.load(path)


def get_params(
    total_samples: int,
    domain_size: int,
    lr_factor: int,
    time_range: list[int],
    window_size: int,
) -> tuple[dict, dict]:
    dt = np.arange(window_size) - window_size // 2
    time_steps_hr = np.random.randint(time_range[0], time_range[1], size=total_samples)
    # reshape time_steps to (total_samples, len(dt)) so that for each i we can get time_steps[i] + dt[j]
    time_steps_lr = np.repeat(time_steps_hr[:, np.newaxis], len(dt), axis=1) + dt
    # time_steps.shape = [total_samples, window_size]
    starts = np.random.randint(1, 1024 - domain_size, size=(total_samples, 3))
    ends = starts + domain_size - 1
    all_params_lr = [
        [
            {
                "time_step": time_steps_lr[i, j],
                "start": starts[i],
                "end": ends[i],
                "step": np.full(3, lr_factor, dtype=int),
                "filter_width": lr_factor,
            }
            for j in range(len(dt))
        ]
        for i in range(total_samples)
    ]
    all_params_hr = [
        {
            "time_step": time_steps_hr[i],
            "start": starts[i],
            "end": ends[i],
            "step": np.ones(3, dtype=int),
            "filter_width": 1,
        }
        for i in range(total_samples)
    ]
    return all_params_lr, all_params_hr


def download_generic(
    total_samples: int,
    domain_size: int,
    lr_factor: int,
    time_range: tuple[int, int],
    window_size: int,
    tmp_data_dir: Path,
    token: str,
):
    """Download all the data from the JHTDB database."""
    # initialize runner
    lJHTDB = pyJHTDB.libJHTDB()
    lJHTDB.initialize()
    lJHTDB.add_token(token)
    tmp_data_dir.mkdir(parents=True, exist_ok=True)

    all_params_lr, all_params_hr = get_params(
        total_samples, domain_size, lr_factor, time_range, window_size
    )
    # add path to all the params
    all_params_hr = [
        dict(p, path=tmp_data_dir / get_filename(**p)) for p in all_params_hr
    ]
    all_params_lr = [
        [dict(p, path=tmp_data_dir / get_filename(**p)) for p in lr]
        for lr in all_params_lr
    ]

    # all_params_lr.shape = [total_samples, window_size]
    # all_params_hr.shape = [total_samples]
    # flatten nested params
    all_params = list(chain.from_iterable(all_params_lr)) + all_params_hr
    # This could be parallelizable, but it is non-trivial to get around the rate limiting.
    for p in tqdm(all_params):
        download_jhtdb(loader=lJHTDB, **p)
    return all_params_lr, all_params_hr, all_params


def make_jhtdb_dataset(
    name: str,
    total_samples: int = 128,
    train_split: float = 0.8,
    val_split: float = 0.1,
    test_split: float = 0.1,
    domain_size: int = 64,
    lr_factor: int = 4,
    root: Path = Path("dataset/jhtdb"),
    time_range: tuple[int, int] = (2, 1023),
    window_size: int = 3,
    seed: int = 123,
    token: str = "edu.jhu.pha.turbulence.testing-201311",
) -> tuple[np.ndarray, np.ndarray]:
    """Creates low and high res dataset from JHTDB database.

    Where:
    low_res.shape = [nr_samples, 3, domain_size / lr_factor, domain_size / lr_factor, domain_size / lr_factor]
    high_res.shape = [nr_samples, 3, domain_size, domain_size, domain_size]
    And 3 corresponds to the x, y, z components of the velocity field.

    Make a dataset from the JHTDB database.
    :param: name: name of the dataset
    :param: total_samples: total number of samples to generate
    :param: train_split: percentage of samples to use for training
    :param: val_split: percentage of samples to use for validation
    :param: test_split: percentage of samples to use for testing
    :param: domain_size: size of the domain to generate
    :param: lr_factor: factor to downsample the data
    :param: root: root directory to store the dataset
    :param: time_range: range of time steps to sample from
    :param: seed: seed to generate the dataset
    :param: window_size: size of the window to sample from
    :param: token: token to access the JHTDB database
    :return: tuple of low res and high res data
    """
    assert window_size % 2 == 1, "Window size must be odd"
    assert time_range[0] - window_size // 2 >= 1, "Time step out of range"
    assert time_range[1] + window_size // 2 <= 1024, "Time step out of range"
    assert time_range[0] >= 1 and time_range[1] <= 1024, "Time step out of range"

    np.random.seed(seed)
    # download all the data
    tmp_data_dir = root / "tmp"
    all_params_lr, all_params_hr, _ = download_generic(
        total_samples,
        domain_size,
        lr_factor,
        time_range,
        window_size,
        tmp_data_dir,
        token,
    )
    assert len(all_params_lr) == len(all_params_hr), "Length mismatch"

    # split the data
    cur_root = root / name
    cur_root.mkdir(parents=True, exist_ok=True)
    splits_ratios = [("train", train_split), ("val", val_split), ("test", test_split)]

    for split, split_ratio in splits_ratios:
        # split data
        split_dir = cur_root / split
        split_params_lr = all_params_lr[: int(total_samples * split_ratio)]
        split_params_hr = all_params_hr[: int(total_samples * split_ratio)]

        # compress all the data to a zip
        split_paths = [
            p["path"]
            for p in split_params_hr + list(chain.from_iterable(split_params_lr))
        ]
        with zipfile.ZipFile(cur_root / f"{split}.zip", "w") as z:
            for p in split_paths:
                z.write(p, p.name)

        # create metadata
        metadata = []
        for lr, hr in zip(split_params_lr, split_params_hr):
            metadata.append(
                {
                    "time_step": hr["time_step"],
                    "window_size": window_size,
                    "sx": hr["start"][0],
                    "sy": hr["start"][1],
                    "sz": hr["start"][2],
                    "ex": hr["end"][0],
                    "ey": hr["end"][1],
                    "ez": hr["end"][2],
                    "lr_factor": lr_factor,
                    "hr_path": str(split_dir / hr["path"].name),
                    "lr_paths": json.dumps(
                        [str(split_dir / p["path"].name) for p in lr]
                    ),
                }
            )

        metadata_df = pd.DataFrame(metadata)
        metadata_df.to_csv(cur_root / f"metadata_{split}.csv", index=False)


if __name__ == "__main__":
    CLI(make_jhtdb_dataset)