Datasets:
divyasharma0795
commited on
Upload dataclass_code.ipynb
Browse files- 01 Codes/dataclass_code.ipynb +101 -0
01 Codes/dataclass_code.ipynb
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from datasets import load_dataset\n",
|
10 |
+
"\n",
|
11 |
+
"dataset = load_dataset(\"divyasharma0795/AppleVisionPro_Tweets\")"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 2,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [
|
19 |
+
{
|
20 |
+
"name": "stdout",
|
21 |
+
"output_type": "stream",
|
22 |
+
"text": [
|
23 |
+
"HuggingFaceDataset(id=1769458624638619691, tweetText=\"Mordecai I can't sell nft for 10 dollars, how does this nft business work? #bloodbath #AppleVisionPro #DeadpoolAndWolverine #RegularShow @JGQuintel link: https://t.co/Bq3dzV4wgR https://t.co/rbrerIFcIs\", tweetURL='https://twitter.com/harndefty/status/1769458624638619691', tweetAuthor='Harndefty 🐔🍗', handle='@harndefty', replyCount=0, quoteCount=0, retweetCount=0, likeCount=0, views='26', bookmarkCount=0, createdAt='2024-03-17 13:19:45')\n"
|
24 |
+
]
|
25 |
+
}
|
26 |
+
],
|
27 |
+
"source": [
|
28 |
+
"from dataclasses import dataclass\n",
|
29 |
+
"from typing import List\n",
|
30 |
+
"from datasets import load_dataset\n",
|
31 |
+
"\n",
|
32 |
+
"\n",
|
33 |
+
"@dataclass\n",
|
34 |
+
"class HuggingFaceDataset:\n",
|
35 |
+
" id: int\n",
|
36 |
+
" tweetText: str\n",
|
37 |
+
" tweetURL: str\n",
|
38 |
+
" tweetAuthor: str\n",
|
39 |
+
" handle: str\n",
|
40 |
+
" replyCount: int\n",
|
41 |
+
" quoteCount: int\n",
|
42 |
+
" retweetCount: int\n",
|
43 |
+
" likeCount: int\n",
|
44 |
+
" views: int\n",
|
45 |
+
" bookmarkCount: int\n",
|
46 |
+
" createdAt: str\n",
|
47 |
+
"\n",
|
48 |
+
"\n",
|
49 |
+
"def load_custom_dataset(dataset_name):\n",
|
50 |
+
" dataset = load_dataset(dataset_name)\n",
|
51 |
+
"\n",
|
52 |
+
" # Extract relevant information and create a list of HuggingFaceDataset instances\n",
|
53 |
+
" custom_dataset = [\n",
|
54 |
+
" HuggingFaceDataset(\n",
|
55 |
+
" id=row[\"id\"],\n",
|
56 |
+
" tweetText=row[\"tweetText\"],\n",
|
57 |
+
" tweetURL=row[\"tweetURL\"],\n",
|
58 |
+
" tweetAuthor=row[\"tweetAuthor\"],\n",
|
59 |
+
" handle=row[\"handle\"],\n",
|
60 |
+
" replyCount=row[\"replyCount\"],\n",
|
61 |
+
" quoteCount=row[\"quoteCount\"],\n",
|
62 |
+
" retweetCount=row[\"retweetCount\"],\n",
|
63 |
+
" likeCount=row[\"likeCount\"],\n",
|
64 |
+
" views=row[\"views\"],\n",
|
65 |
+
" bookmarkCount=row[\"bookmarkCount\"],\n",
|
66 |
+
" createdAt=row[\"createdAt\"],\n",
|
67 |
+
" )\n",
|
68 |
+
" for row in dataset[\"train\"]\n",
|
69 |
+
" ]\n",
|
70 |
+
"\n",
|
71 |
+
" return custom_dataset\n",
|
72 |
+
"\n",
|
73 |
+
"\n",
|
74 |
+
"# Usage\n",
|
75 |
+
"custom_dataset = load_custom_dataset(\"divyasharma0795/AppleVisionPro_Tweets\")\n",
|
76 |
+
"print(custom_dataset[0]) # Print the first instance"
|
77 |
+
]
|
78 |
+
}
|
79 |
+
],
|
80 |
+
"metadata": {
|
81 |
+
"kernelspec": {
|
82 |
+
"display_name": "base",
|
83 |
+
"language": "python",
|
84 |
+
"name": "python3"
|
85 |
+
},
|
86 |
+
"language_info": {
|
87 |
+
"codemirror_mode": {
|
88 |
+
"name": "ipython",
|
89 |
+
"version": 3
|
90 |
+
},
|
91 |
+
"file_extension": ".py",
|
92 |
+
"mimetype": "text/x-python",
|
93 |
+
"name": "python",
|
94 |
+
"nbconvert_exporter": "python",
|
95 |
+
"pygments_lexer": "ipython3",
|
96 |
+
"version": "3.11.5"
|
97 |
+
}
|
98 |
+
},
|
99 |
+
"nbformat": 4,
|
100 |
+
"nbformat_minor": 2
|
101 |
+
}
|