--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: Prompt dtype: string - name: Category dtype: string - name: Challenge dtype: string - name: Note dtype: string - name: images dtype: image - name: model_name dtype: string - name: seed dtype: int64 splits: - name: train num_bytes: 149898953.312 num_examples: 1632 download_size: 150261013 dataset_size: 149898953.312 --- # Dataset Card for "wuerstchen" Dataset was generated using the code below: ```py import torch from datasets import Dataset, Features from datasets import Image as ImageFeature from datasets import Value, load_dataset from diffusers import AutoPipelineForText2Image import PIL def main(): print("Loading dataset...") parti_prompts = load_dataset("nateraw/parti-prompts", split="train") print("Loading pipeline...") seed = 0 device = "cuda" generator = torch.Generator(device).manual_seed(seed) dtype = torch.float16 ckpt_id = "warp-diffusion/wuerstchen" pipeline = AutoPipelineForText2Image.from_pretrained( ckpt_id, torch_dtype=dtype ).to(device) pipeline.prior_prior = torch.compile(pipeline.prior_prior, mode="reduce-overhead", fullgraph=True) pipeline.decoder = torch.compile(pipeline.decoder, mode="reduce-overhead", fullgraph=True) print("Running inference...") main_dict = {} for i in range(len(parti_prompts)): sample = parti_prompts[i] prompt = sample["Prompt"] image = pipeline( prompt=prompt, height=1024, width=1024, prior_guidance_scale=4.0, decoder_guidance_scale=0.0, generator=generator, ).images[0] image = image.resize((256, 256), resample=PIL.Image.Resampling.LANCZOS) img_path = f"wuerstchen_{i}.png" image.save(img_path) main_dict.update( { prompt: { "img_path": img_path, "Category": sample["Category"], "Challenge": sample["Challenge"], "Note": sample["Note"], "model_name": ckpt_id, "seed": seed, } } ) def generation_fn(): for prompt in main_dict: prompt_entry = main_dict[prompt] yield { "Prompt": prompt, "Category": prompt_entry["Category"], "Challenge": prompt_entry["Challenge"], "Note": prompt_entry["Note"], "images": {"path": prompt_entry["img_path"]}, "model_name": prompt_entry["model_name"], "seed": prompt_entry["seed"], } print("Preparing HF dataset...") ds = Dataset.from_generator( generation_fn, features=Features( Prompt=Value("string"), Category=Value("string"), Challenge=Value("string"), Note=Value("string"), images=ImageFeature(), model_name=Value("string"), seed=Value("int64"), ), ) ds_id = "diffusers-parti-prompts/wuerstchen" ds.push_to_hub(ds_id) if __name__ == "__main__": main() ```