|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ELI5: Long Form Question Answering dataset""" |
|
|
|
import bz2 |
|
import io |
|
import json |
|
import lzma |
|
import os |
|
import re |
|
from os.path import isfile |
|
from os.path import join as pjoin |
|
from time import time |
|
|
|
import datasets |
|
from datasets.exceptions import DefunctDatasetError |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_SUB_REDDITS = ["explainlikeimfive", "askscience", "AskHistorians"] |
|
_REDDIT_URL = "https://files.pushshift.io/reddit/" |
|
|
|
|
|
_URL_REGEX = r"""(?i)\b((?:https?:(?:/{1,3}|[a-z0-9%])|[a-z0-9.\-]+[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info|int|jobs|mobi|museum|name|post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)/)(?:[^\s()<>{}\[\]]+|\([^\s()]*?\([^\s()]+\)[^\s()]*?\)|\([^\s]+?\))+(?:\([^\s()]*?\([^\s()]+\)[^\s()]*?\)|\([^\s]+?\)|[^\s`!()\[\]{};:'".,<>?«»“”‘’])|(?:(?<!@)[a-z0-9]+(?:[.\-][a-z0-9]+)*[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info|int|jobs|mobi|museum|name|post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)\b/?(?!@)))""" |
|
|
|
|
|
_HTML_PAIRS = [ |
|
("&", " & "), |
|
(""", ' " '), |
|
("&apos", " ' "), |
|
(">", " > "), |
|
("<", " < "), |
|
] |
|
|
|
|
|
|
|
def _extract_urls_from_text(stp): |
|
url_list = list(set(re.findall(_URL_REGEX, stp))) |
|
for i, url in enumerate(url_list): |
|
stp = stp.replace(url, "_URL_%d_" % (i,)) |
|
for a, b in _HTML_PAIRS: |
|
stp = stp.replace(a, b) |
|
return (stp, url_list) |
|
|
|
|
|
|
|
def _gather_dump_urls(base_url, mode, dl_manager): |
|
from bs4 import BeautifulSoup |
|
|
|
page_path = dl_manager.download(_REDDIT_URL + mode) |
|
page_f = open(page_path, encoding="utf-8") |
|
page_content = page_f.read() |
|
page_f.close() |
|
soup = BeautifulSoup(page_content, "lxml") |
|
files = [it for it in soup.find_all(attrs={"class": "file"})] |
|
f_urls = [ |
|
tg.find_all(lambda x: x.has_attr("href"))[0]["href"] |
|
for tg in files |
|
if len(tg.find_all(lambda x: x.has_attr("href"))) > 0 |
|
] |
|
date_to_url = {} |
|
for url_st in f_urls: |
|
ls = re.findall(r"20[0-9]{2}-[0-9]{2}", url_st) |
|
if len(ls) > 0: |
|
yr, mt = ls[0].split("-") |
|
date_to_url[(int(yr), int(mt))] = base_url + mode + url_st[1:] |
|
return date_to_url |
|
|
|
|
|
|
|
def _valid_line(dct, mode): |
|
top_level = (mode == "submissions") or ( |
|
len(dct["body"].split()) > 2 |
|
and not dct["body"].startswith("Your submission has been removed") |
|
and dct["author"] != "AutoModerator" |
|
and dct["parent_id"] == dct["link_id"] |
|
) |
|
res = dct.get("num_comments", 1) > 0 and dct.get("score", 0) and dct.get("score", 0) >= 2 and top_level |
|
return res |
|
|
|
|
|
def _open_compressed_file(f_name, f_type): |
|
import zstandard as zstd |
|
|
|
fh = None |
|
if f_type == "xz": |
|
f = lzma.open(f_name, "rt") |
|
elif f_type == "bz2": |
|
f = bz2.open(f_name, "rt") |
|
elif f_type == "zst": |
|
fh = open(f_name, "rb") |
|
dctx = zstd.ZstdDecompressor() |
|
stream_reader = dctx.stream_reader(fh) |
|
f = io.TextIOWrapper(stream_reader, encoding="utf-8") |
|
else: |
|
raise NotImplementedError |
|
return f, fh |
|
|
|
|
|
|
|
def _download_and_select_lines(dl_manager, f_url, mode, st_time): |
|
|
|
logger.info(f"downloading {f_url} {time() - st_time:.2f}") |
|
f_downloaded_path = dl_manager.download(f_url) |
|
logger.info(f"decompressing and filtering {f_url} {time() - st_time:.2f}") |
|
f, fh = _open_compressed_file(f_downloaded_path, f_url.split(".")[-1]) |
|
lines = dict([(name, []) for name in _SUB_REDDITS]) |
|
for line in f: |
|
line_dct = json.loads(line) |
|
if any([line_dct.get("subreddit", "") == name for name in _SUB_REDDITS]): |
|
lines[line_dct["subreddit"]] += [line_dct] |
|
f.close() |
|
if f_url.split(".")[-1] == "zst": |
|
fh.close() |
|
os.remove(f_downloaded_path) |
|
os.remove(f_downloaded_path + ".json") |
|
os.remove(f_downloaded_path + ".lock") |
|
logger.info("tokenizing and selecting {f_url} {time() - st_time:.2f}") |
|
processed_items = dict([(name, []) for name in _SUB_REDDITS]) |
|
if mode == "submissions": |
|
key_list = ["id", "score", "url", "title", "selftext", "subreddit"] |
|
else: |
|
key_list = ["id", "link_id", "parent_id", "score", "body"] |
|
for name in _SUB_REDDITS: |
|
for line in lines[name]: |
|
if _valid_line(line, mode): |
|
reddit_res = {} |
|
for k in key_list: |
|
if k in ["title", "selftext", "body"]: |
|
reddit_res[k] = _extract_urls_from_text(line[k]) |
|
else: |
|
reddit_res[k] = line[k] |
|
processed_items[name] += [reddit_res] |
|
logger.info(f"Total found {sum([len(ls) for ls in processed_items.values()])} {mode} {time() - st_time:.2f}") |
|
return processed_items |
|
|
|
|
|
|
|
def _post_process(reddit_dct, name=""): |
|
|
|
start_re = re.compile(r"""\A[\[|\(]?[ ]?eli[5f][ ]?[\]|\)]?[]?[:,]?""", re.IGNORECASE) |
|
if name == "explainlikeimfive": |
|
title, uls = reddit_dct["title"] |
|
title = start_re.sub("", title.strip()).strip() |
|
reddit_dct["title"] = [title, uls] |
|
|
|
comments = [ |
|
c |
|
for i, c in enumerate(reddit_dct["comments"]) |
|
if len(c["body"][0].split()) >= 8 and c["id"] not in [x["id"] for x in reddit_dct["comments"][:i]] |
|
] |
|
comments = sorted(comments, key=lambda c: (c["score"], len(c["body"][0].split()), c["id"]), reverse=True) |
|
reddit_dct["comments"] = comments |
|
return reddit_dct |
|
|
|
|
|
def _download_and_filter_reddit(dl_manager, start_year=2011, start_month=7, end_year=2019, end_month=7): |
|
|
|
date_to_url_submissions = _gather_dump_urls(_REDDIT_URL, "submissions", dl_manager) |
|
date_to_url_comments = _gather_dump_urls(_REDDIT_URL, "comments", dl_manager) |
|
|
|
st_time = time() |
|
qa_dict = dict([(name, {}) for name in _SUB_REDDITS]) |
|
|
|
for year in range(start_year, end_year + 1): |
|
start_mth = start_month if year == start_year else 1 |
|
end_mth = end_month if year == end_year else 12 |
|
months = range(start_mth, end_mth + 1) |
|
for month in months: |
|
if (year, month) in date_to_url_submissions: |
|
f_url = date_to_url_submissions[(year, month)] |
|
processed_submissions = _download_and_select_lines(dl_manager, f_url, "submissions", st_time) |
|
for name in _SUB_REDDITS: |
|
for dct in processed_submissions[name]: |
|
qa_dict[name][dct["id"]] = dct |
|
else: |
|
logger.info(f"Could not find submissions dump file for year {year:4d} month {month:2d}") |
|
|
|
for year in range(start_year, end_year + 1): |
|
start_mth = start_month if year == start_year else 1 |
|
end_mth = end_month if year == end_year else 12 |
|
months = range(start_mth, end_mth + 1) |
|
for month in months: |
|
if (year, month) in date_to_url_comments: |
|
f_url = date_to_url_comments[(year, month)] |
|
processed_comments = _download_and_select_lines(dl_manager, f_url, "comments", st_time) |
|
|
|
for name in _SUB_REDDITS: |
|
merged_comments = 0 |
|
for dct in processed_comments[name]: |
|
did = dct["parent_id"].split("_")[-1] |
|
if did in qa_dict[name]: |
|
merged_comments += 1 |
|
qa_dict[name][did]["comments"] = qa_dict[name][did].get("comments", []) + [dct] |
|
else: |
|
logger.info(f"Could not find comments dump file for year {year:4d} month {month:2d}") |
|
|
|
res = {} |
|
for name in _SUB_REDDITS: |
|
qa_dct_list = [(k, _post_process(rdct, name)) for k, rdct in qa_dict[name].items() if "comments" in rdct] |
|
qa_dct_list = [x for x in qa_dct_list if len(x[1]["comments"]) > 0 and name in x[1]["url"]] |
|
res[name] = dict(qa_dct_list[:]) |
|
return res |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Explain Like I'm 5 long form QA dataset |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{DBLP:conf/acl/FanJPGWA19, |
|
author = {Angela Fan and |
|
Yacine Jernite and |
|
Ethan Perez and |
|
David Grangier and |
|
Jason Weston and |
|
Michael Auli}, |
|
editor = {Anna Korhonen and |
|
David R. Traum and |
|
Lluis Marquez}, |
|
title = {{ELI5:} Long Form Question Answering}, |
|
booktitle = {Proceedings of the 57th Conference of the Association for Computational |
|
Linguistics, {ACL} 2019, Florence, Italy, July 28- August 2, 2019, |
|
Volume 1: Long Papers}, |
|
pages = {3558--3567}, |
|
publisher = {Association for Computational Linguistics}, |
|
year = {2019}, |
|
url = {https://doi.org/10.18653/v1/p19-1346}, |
|
doi = {10.18653/v1/p19-1346}, |
|
} |
|
""" |
|
|
|
|
|
class Eli5Config(datasets.BuilderConfig): |
|
"""BuilderConfig for ExplainLikeImFive.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for ExplainLikeImFive. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Eli5Config, self).__init__(**kwargs) |
|
|
|
|
|
class Eli5(datasets.GeneratorBasedBuilder): |
|
"""ELI5: Explain Like I'm Five long form question answering dataset.""" |
|
|
|
BUILDER_CONFIG_CLASS = Eli5Config |
|
_DATA_SPLIT_URL = "https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/eli5/reddit_data_split.json" |
|
|
|
BUILDER_CONFIGS = [ |
|
Eli5Config(name="LFQA_reddit", version=datasets.Version("1.0.0"), description="long from QA subreddits"), |
|
] |
|
|
|
test_dummy_data = False |
|
|
|
def _info(self): |
|
raise DefunctDatasetError( |
|
"Dataset 'eli5' is defunct and no longer accessible due to unavailability of the source data" |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"q_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"selftext": datasets.Value("string"), |
|
"document": datasets.Value("string"), |
|
"subreddit": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"a_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"score": datasets.Value("int32"), |
|
} |
|
), |
|
"title_urls": datasets.features.Sequence(datasets.Value("string")), |
|
"selftext_urls": datasets.features.Sequence(datasets.Value("string")), |
|
"answers_urls": datasets.features.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://facebookresearch.github.io/ELI5/explore.html", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
qa_data_file = pjoin( |
|
self._cache_dir_root, self._relative_data_dir(with_version=False), "reddit_downloaded_qa_lists.json" |
|
) |
|
if isfile(qa_data_file): |
|
logger.info("loading pre-computed QA list") |
|
self.filtered_reddit = json.load(open(qa_data_file)) |
|
else: |
|
self.filtered_reddit = _download_and_filter_reddit( |
|
dl_manager, start_year=2011, start_month=7, end_year=2019, end_month=7 |
|
) |
|
logger.info("saving pre-computed QA list") |
|
json.dump(self.filtered_reddit, open(qa_data_file, "w")) |
|
|
|
fpath_splits = dl_manager.download(self._DATA_SPLIT_URL) |
|
self.data_split = json.load(open(fpath_splits)) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split("train_eli5"), |
|
gen_kwargs={"split": "train", "subreddit_name": "explainlikeimfive"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("validation_eli5"), |
|
gen_kwargs={"split": "validation", "subreddit_name": "explainlikeimfive"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("test_eli5"), |
|
gen_kwargs={"split": "test", "subreddit_name": "explainlikeimfive"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("train_asks"), |
|
gen_kwargs={"split": "train", "subreddit_name": "askscience"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("validation_asks"), |
|
gen_kwargs={"split": "validation", "subreddit_name": "askscience"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("test_asks"), |
|
gen_kwargs={"split": "test", "subreddit_name": "askscience"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("train_askh"), |
|
gen_kwargs={"split": "train", "subreddit_name": "AskHistorians"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("validation_askh"), |
|
gen_kwargs={"split": "validation", "subreddit_name": "AskHistorians"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("test_askh"), |
|
gen_kwargs={"split": "test", "subreddit_name": "AskHistorians"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, split, subreddit_name): |
|
logger.info(f"generating examples from = {subreddit_name}, {split} set") |
|
if split in self.data_split.get(subreddit_name, []): |
|
id_list = self.data_split[subreddit_name][split] |
|
data = [ |
|
self.filtered_reddit[subreddit_name][q_id] |
|
for q_id in id_list |
|
if q_id in self.filtered_reddit[subreddit_name] |
|
] |
|
elif split == "train": |
|
data = [ |
|
self.filtered_reddit[subreddit_name][q_id] |
|
for subreddit_name in self.filtered_reddit |
|
for q_id in self.filtered_reddit[subreddit_name] |
|
] |
|
else: |
|
data = [] |
|
for example in data: |
|
id_ = example["id"] |
|
title = example["title"][0] |
|
title_urls = example["title"][1] |
|
selftext = example["selftext"][0] |
|
selftext_urls = example["selftext"][1] |
|
answer_scores = [ans["score"] for ans in example["comments"]] |
|
answer_ids = [ans["id"] for ans in example["comments"]] |
|
|
|
url_maps = [(ul, i, j) for i, ans in enumerate(example["comments"]) for j, ul in enumerate(ans["body"][1])] |
|
answers_urls = [ul for ul, _, _ in url_maps] |
|
map_url_indices = dict([((i, j), k) for k, (_, i, j) in enumerate(url_maps)]) |
|
answer_texts = [] |
|
for i, ans in enumerate(example["comments"]): |
|
txt = ans["body"][0] |
|
for j, _ in enumerate(ans["body"][1]): |
|
txt = txt.replace(f"_URL_{j}_", f"_URL_{map_url_indices[(i, j)]}_") |
|
answer_texts += [txt.strip()] |
|
yield id_, { |
|
"q_id": id_, |
|
"title": title, |
|
"selftext": selftext, |
|
"document": "", |
|
"subreddit": example.get("subreddit", subreddit_name), |
|
"answers": {"a_id": answer_ids, "text": answer_texts, "score": answer_scores}, |
|
"title_urls": title_urls, |
|
"selftext_urls": selftext_urls, |
|
"answers_urls": answers_urls, |
|
} |
|
|