""" Distributed training/validation utils Hacked together by / Copyright 2020 Ross Wightman """ import logging import os from typing import Optional import torch from torch import distributed as dist from .model import unwrap_model _logger = logging.getLogger(__name__) def reduce_tensor(tensor, n): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) rt /= n return rt def distribute_bn(model, world_size, reduce=False): # ensure every node has the same running bn stats for bn_name, bn_buf in unwrap_model(model).named_buffers(recurse=True): if ('running_mean' in bn_name) or ('running_var' in bn_name): if reduce: # average bn stats across whole group torch.distributed.all_reduce(bn_buf, op=dist.ReduceOp.SUM) bn_buf /= float(world_size) else: # broadcast bn stats from rank 0 to whole group torch.distributed.broadcast(bn_buf, 0) def is_global_primary(args): return args.rank == 0 def is_local_primary(args): return args.local_rank == 0 def is_primary(args, local=False): return is_local_primary(args) if local else is_global_primary(args) def is_distributed_env(): if 'WORLD_SIZE' in os.environ: return int(os.environ['WORLD_SIZE']) > 1 if 'SLURM_NTASKS' in os.environ: return int(os.environ['SLURM_NTASKS']) > 1 return False def world_info_from_env(): local_rank = 0 for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'): if v in os.environ: local_rank = int(os.environ[v]) break global_rank = 0 for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'): if v in os.environ: global_rank = int(os.environ[v]) break world_size = 1 for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'): if v in os.environ: world_size = int(os.environ[v]) break return local_rank, global_rank, world_size def init_distributed_device(args): # Distributed training = training on more than one GPU. # Works in both single and multi-node scenarios. args.distributed = False args.world_size = 1 args.rank = 0 # global rank args.local_rank = 0 result = init_distributed_device_so( device=getattr(args, 'device', 'cuda'), dist_backend=getattr(args, 'dist_backend', None), dist_url=getattr(args, 'dist_url', None), ) args.device = result['device'] args.world_size = result['world_size'] args.rank = result['global_rank'] args.local_rank = result['local_rank'] args.distributed = result['distributed'] device = torch.device(args.device) return device def init_distributed_device_so( device: str = 'cuda', dist_backend: Optional[str] = None, dist_url: Optional[str] = None, ): # Distributed training = training on more than one GPU. # Works in both single and multi-node scenarios. distributed = False world_size = 1 global_rank = 0 local_rank = 0 device_type, *device_idx = device.split(':', maxsplit=1) if dist_backend is None: # FIXME: verify that ROCm transform nccl to rccl dist_backends = { "xpu": "ccl", "hpu": "hccl", "cuda": "nccl", "npu": "hccl", } dist_backend = dist_backends.get(device_type, 'gloo') dist_url = dist_url or 'env://' # TBD, support horovod? # if args.horovod: # import horovod.torch as hvd # assert hvd is not None, "Horovod is not installed" # hvd.init() # args.local_rank = int(hvd.local_rank()) # args.rank = hvd.rank() # args.world_size = hvd.size() # args.distributed = True # os.environ['LOCAL_RANK'] = str(args.local_rank) # os.environ['RANK'] = str(args.rank) # os.environ['WORLD_SIZE'] = str(args.world_size) if is_distributed_env(): if 'SLURM_PROCID' in os.environ: # DDP via SLURM local_rank, global_rank, world_size = world_info_from_env() # SLURM var -> torch.distributed vars in case needed os.environ['LOCAL_RANK'] = str(local_rank) os.environ['RANK'] = str(global_rank) os.environ['WORLD_SIZE'] = str(world_size) torch.distributed.init_process_group( backend=dist_backend, init_method=dist_url, world_size=world_size, rank=global_rank, ) else: # DDP via torchrun, torch.distributed.launch local_rank, _, _ = world_info_from_env() torch.distributed.init_process_group( backend=dist_backend, init_method=dist_url, ) world_size = torch.distributed.get_world_size() global_rank = torch.distributed.get_rank() distributed = True if device_type == 'cuda': assert torch.cuda.is_available(), f'CUDA is not available but {device} was specified.' if device_type == 'npu': assert torch.npu.is_available(), f'Ascend NPU is not available but {device} was specified.' if distributed and device != 'cpu': # Ignore manually specified device index in distributed mode and # override with resolved local rank, fewer headaches in most setups. if device_idx: _logger.warning(f'device index {device_idx[0]} removed from specified ({device}).') device = f'{device_type}:{local_rank}' if device.startswith('cuda:'): torch.cuda.set_device(device) return dict( device=device, global_rank=global_rank, local_rank=local_rank, world_size=world_size, distributed=distributed, )