import logging from itertools import islice from typing import Collection, Optional from torch import nn as nn from timm.models import group_parameters _logger = logging.getLogger(__name__) def param_groups_weight_decay( model: nn.Module, weight_decay: float = 1e-5, no_weight_decay_list: Collection[str] = (), ): no_weight_decay_list = set(no_weight_decay_list) decay = [] no_decay = [] for name, param in model.named_parameters(): if not param.requires_grad: continue if param.ndim <= 1 or name.endswith(".bias") or name in no_weight_decay_list: no_decay.append(param) else: decay.append(param) return [ {'params': no_decay, 'weight_decay': 0.}, {'params': decay, 'weight_decay': weight_decay}] def _group(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def auto_group_layers(model, layers_per_group=12, num_groups=None): def _in_head(n, hp): if not hp: return True elif isinstance(hp, (tuple, list)): return any([n.startswith(hpi) for hpi in hp]) else: return n.startswith(hp) head_prefix = getattr(model, 'pretrained_cfg', {}).get('classifier', None) names_trunk = [] names_head = [] for n, _ in model.named_parameters(): names_head.append(n) if _in_head(n, head_prefix) else names_trunk.append(n) # group non-head layers num_trunk_layers = len(names_trunk) if num_groups is not None: layers_per_group = -(num_trunk_layers // -num_groups) names_trunk = list(_group(names_trunk, layers_per_group)) num_trunk_groups = len(names_trunk) layer_map = {n: i for i, l in enumerate(names_trunk) for n in l} layer_map.update({n: num_trunk_groups for n in names_head}) return layer_map _layer_map = auto_group_layers # backward compat def param_groups_layer_decay( model: nn.Module, weight_decay: float = 0.05, no_weight_decay_list: Collection[str] = (), weight_decay_exclude_1d: bool = True, layer_decay: float = .75, end_layer_decay: Optional[float] = None, verbose: bool = False, ): """ Parameter groups for layer-wise lr decay & weight decay Based on BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L58 """ no_weight_decay_list = set(no_weight_decay_list) param_group_names = {} # NOTE for debugging param_groups = {} if hasattr(model, 'group_matcher'): # FIXME interface needs more work layer_map = group_parameters(model, model.group_matcher(coarse=False), reverse=True) else: # fallback layer_map = auto_group_layers(model) num_layers = max(layer_map.values()) + 1 layer_max = num_layers - 1 layer_scales = list(layer_decay ** (layer_max - i) for i in range(num_layers)) for name, param in model.named_parameters(): if not param.requires_grad: continue # no decay: all 1D parameters and model specific ones if (weight_decay_exclude_1d and param.ndim <= 1) or name in no_weight_decay_list: g_decay = "no_decay" this_decay = 0. else: g_decay = "decay" this_decay = weight_decay layer_id = layer_map.get(name, layer_max) group_name = "layer_%d_%s" % (layer_id, g_decay) if group_name not in param_groups: this_scale = layer_scales[layer_id] param_group_names[group_name] = { "lr_scale": this_scale, "weight_decay": this_decay, "param_names": [], } param_groups[group_name] = { "lr_scale": this_scale, "weight_decay": this_decay, "params": [], } param_group_names[group_name]["param_names"].append(name) param_groups[group_name]["params"].append(param) if verbose: import json _logger.info("parameter groups: \n%s" % json.dumps(param_group_names, indent=2)) return list(param_groups.values())