|
""" EfficientFormer |
|
|
|
@article{li2022efficientformer, |
|
title={EfficientFormer: Vision Transformers at MobileNet Speed}, |
|
author={Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Eric and Evangelidis, Georgios and Tulyakov, |
|
Sergey and Wang, Yanzhi and Ren, Jian}, |
|
journal={arXiv preprint arXiv:2206.01191}, |
|
year={2022} |
|
} |
|
|
|
Based on Apache 2.0 licensed code at https://github.com/snap-research/EfficientFormer, Copyright (c) 2022 Snap Inc. |
|
|
|
Modifications and timm support by / Copyright 2022, Ross Wightman |
|
""" |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import DropPath, trunc_normal_, to_2tuple, Mlp, ndgrid |
|
from ._builder import build_model_with_cfg |
|
from ._features import feature_take_indices |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import generate_default_cfgs, register_model |
|
|
|
__all__ = ['EfficientFormer'] |
|
|
|
|
|
EfficientFormer_width = { |
|
'l1': (48, 96, 224, 448), |
|
'l3': (64, 128, 320, 512), |
|
'l7': (96, 192, 384, 768), |
|
} |
|
|
|
EfficientFormer_depth = { |
|
'l1': (3, 2, 6, 4), |
|
'l3': (4, 4, 12, 6), |
|
'l7': (6, 6, 18, 8), |
|
} |
|
|
|
|
|
class Attention(torch.nn.Module): |
|
attention_bias_cache: Dict[str, torch.Tensor] |
|
|
|
def __init__( |
|
self, |
|
dim=384, |
|
key_dim=32, |
|
num_heads=8, |
|
attn_ratio=4, |
|
resolution=7 |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.scale = key_dim ** -0.5 |
|
self.key_dim = key_dim |
|
self.key_attn_dim = key_dim * num_heads |
|
self.val_dim = int(attn_ratio * key_dim) |
|
self.val_attn_dim = self.val_dim * num_heads |
|
self.attn_ratio = attn_ratio |
|
|
|
self.qkv = nn.Linear(dim, self.key_attn_dim * 2 + self.val_attn_dim) |
|
self.proj = nn.Linear(self.val_attn_dim, dim) |
|
|
|
resolution = to_2tuple(resolution) |
|
pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) |
|
rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() |
|
rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1] |
|
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) |
|
self.register_buffer('attention_bias_idxs', rel_pos) |
|
self.attention_bias_cache = {} |
|
|
|
@torch.no_grad() |
|
def train(self, mode=True): |
|
super().train(mode) |
|
if mode and self.attention_bias_cache: |
|
self.attention_bias_cache = {} |
|
|
|
def get_attention_biases(self, device: torch.device) -> torch.Tensor: |
|
if torch.jit.is_tracing() or self.training: |
|
return self.attention_biases[:, self.attention_bias_idxs] |
|
else: |
|
device_key = str(device) |
|
if device_key not in self.attention_bias_cache: |
|
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] |
|
return self.attention_bias_cache[device_key] |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x) |
|
qkv = qkv.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) |
|
q, k, v = qkv.split([self.key_dim, self.key_dim, self.val_dim], dim=3) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn + self.get_attention_biases(x.device) |
|
|
|
attn = attn.softmax(dim=-1) |
|
x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class Stem4(nn.Sequential): |
|
def __init__(self, in_chs, out_chs, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): |
|
super().__init__() |
|
self.stride = 4 |
|
|
|
self.add_module('conv1', nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1)) |
|
self.add_module('norm1', norm_layer(out_chs // 2)) |
|
self.add_module('act1', act_layer()) |
|
self.add_module('conv2', nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1)) |
|
self.add_module('norm2', norm_layer(out_chs)) |
|
self.add_module('act2', act_layer()) |
|
|
|
|
|
class Downsample(nn.Module): |
|
""" |
|
Downsampling via strided conv w/ norm |
|
Input: tensor in shape [B, C, H, W] |
|
Output: tensor in shape [B, C, H/stride, W/stride] |
|
""" |
|
|
|
def __init__(self, in_chs, out_chs, kernel_size=3, stride=2, padding=None, norm_layer=nn.BatchNorm2d): |
|
super().__init__() |
|
if padding is None: |
|
padding = kernel_size // 2 |
|
self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding) |
|
self.norm = norm_layer(out_chs) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class Flat(nn.Module): |
|
|
|
def __init__(self, ): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class Pooling(nn.Module): |
|
""" |
|
Implementation of pooling for PoolFormer |
|
--pool_size: pooling size |
|
""" |
|
|
|
def __init__(self, pool_size=3): |
|
super().__init__() |
|
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) |
|
|
|
def forward(self, x): |
|
return self.pool(x) - x |
|
|
|
|
|
class ConvMlpWithNorm(nn.Module): |
|
""" |
|
Implementation of MLP with 1*1 convolutions. |
|
Input: tensor with shape [B, C, H, W] |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.BatchNorm2d, |
|
drop=0. |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Conv2d(in_features, hidden_features, 1) |
|
self.norm1 = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() |
|
self.act = act_layer() |
|
self.fc2 = nn.Conv2d(hidden_features, out_features, 1) |
|
self.norm2 = norm_layer(out_features) if norm_layer is not None else nn.Identity() |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.norm1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.norm2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__(self, dim, init_values=1e-5, inplace=False): |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
|
|
|
|
class MetaBlock1d(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
mlp_ratio=4., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
proj_drop=0., |
|
drop_path=0., |
|
layer_scale_init_value=1e-5 |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.token_mixer = Attention(dim) |
|
self.norm2 = norm_layer(dim) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
act_layer=act_layer, |
|
drop=proj_drop, |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.ls1 = LayerScale(dim, layer_scale_init_value) |
|
self.ls2 = LayerScale(dim, layer_scale_init_value) |
|
|
|
def forward(self, x): |
|
x = x + self.drop_path(self.ls1(self.token_mixer(self.norm1(x)))) |
|
x = x + self.drop_path(self.ls2(self.mlp(self.norm2(x)))) |
|
return x |
|
|
|
|
|
class LayerScale2d(nn.Module): |
|
def __init__(self, dim, init_values=1e-5, inplace=False): |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
gamma = self.gamma.view(1, -1, 1, 1) |
|
return x.mul_(gamma) if self.inplace else x * gamma |
|
|
|
|
|
class MetaBlock2d(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
pool_size=3, |
|
mlp_ratio=4., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.BatchNorm2d, |
|
proj_drop=0., |
|
drop_path=0., |
|
layer_scale_init_value=1e-5 |
|
): |
|
super().__init__() |
|
self.token_mixer = Pooling(pool_size=pool_size) |
|
self.ls1 = LayerScale2d(dim, layer_scale_init_value) |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.mlp = ConvMlpWithNorm( |
|
dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
drop=proj_drop, |
|
) |
|
self.ls2 = LayerScale2d(dim, layer_scale_init_value) |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = x + self.drop_path1(self.ls1(self.token_mixer(x))) |
|
x = x + self.drop_path2(self.ls2(self.mlp(x))) |
|
return x |
|
|
|
|
|
class EfficientFormerStage(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
dim_out, |
|
depth, |
|
downsample=True, |
|
num_vit=1, |
|
pool_size=3, |
|
mlp_ratio=4., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.BatchNorm2d, |
|
norm_layer_cl=nn.LayerNorm, |
|
proj_drop=.0, |
|
drop_path=0., |
|
layer_scale_init_value=1e-5, |
|
): |
|
super().__init__() |
|
self.grad_checkpointing = False |
|
|
|
if downsample: |
|
self.downsample = Downsample(in_chs=dim, out_chs=dim_out, norm_layer=norm_layer) |
|
dim = dim_out |
|
else: |
|
assert dim == dim_out |
|
self.downsample = nn.Identity() |
|
|
|
blocks = [] |
|
if num_vit and num_vit >= depth: |
|
blocks.append(Flat()) |
|
|
|
for block_idx in range(depth): |
|
remain_idx = depth - block_idx - 1 |
|
if num_vit and num_vit > remain_idx: |
|
blocks.append( |
|
MetaBlock1d( |
|
dim, |
|
mlp_ratio=mlp_ratio, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer_cl, |
|
proj_drop=proj_drop, |
|
drop_path=drop_path[block_idx], |
|
layer_scale_init_value=layer_scale_init_value, |
|
)) |
|
else: |
|
blocks.append( |
|
MetaBlock2d( |
|
dim, |
|
pool_size=pool_size, |
|
mlp_ratio=mlp_ratio, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
proj_drop=proj_drop, |
|
drop_path=drop_path[block_idx], |
|
layer_scale_init_value=layer_scale_init_value, |
|
)) |
|
if num_vit and num_vit == remain_idx: |
|
blocks.append(Flat()) |
|
|
|
self.blocks = nn.Sequential(*blocks) |
|
|
|
def forward(self, x): |
|
x = self.downsample(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
return x |
|
|
|
|
|
class EfficientFormer(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
depths, |
|
embed_dims=None, |
|
in_chans=3, |
|
num_classes=1000, |
|
global_pool='avg', |
|
downsamples=None, |
|
num_vit=0, |
|
mlp_ratios=4, |
|
pool_size=3, |
|
layer_scale_init_value=1e-5, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.BatchNorm2d, |
|
norm_layer_cl=nn.LayerNorm, |
|
drop_rate=0., |
|
proj_drop_rate=0., |
|
drop_path_rate=0., |
|
**kwargs |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
|
|
self.stem = Stem4(in_chans, embed_dims[0], norm_layer=norm_layer) |
|
prev_dim = embed_dims[0] |
|
|
|
|
|
self.num_stages = len(depths) |
|
last_stage = self.num_stages - 1 |
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] |
|
downsamples = downsamples or (False,) + (True,) * (self.num_stages - 1) |
|
stages = [] |
|
self.feature_info = [] |
|
for i in range(self.num_stages): |
|
stage = EfficientFormerStage( |
|
prev_dim, |
|
embed_dims[i], |
|
depths[i], |
|
downsample=downsamples[i], |
|
num_vit=num_vit if i == last_stage else 0, |
|
pool_size=pool_size, |
|
mlp_ratio=mlp_ratios, |
|
act_layer=act_layer, |
|
norm_layer_cl=norm_layer_cl, |
|
norm_layer=norm_layer, |
|
proj_drop=proj_drop_rate, |
|
drop_path=dpr[i], |
|
layer_scale_init_value=layer_scale_init_value, |
|
) |
|
prev_dim = embed_dims[i] |
|
stages.append(stage) |
|
self.feature_info += [dict(num_chs=embed_dims[i], reduction=2**(i+2), module=f'stages.{i}')] |
|
self.stages = nn.Sequential(*stages) |
|
|
|
|
|
self.num_features = self.head_hidden_size = embed_dims[-1] |
|
self.norm = norm_layer_cl(self.num_features) |
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
self.head_dist = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() |
|
self.distilled_training = False |
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {k for k, _ in self.named_parameters() if 'attention_biases' in k} |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem=r'^stem', |
|
blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
for s in self.stages: |
|
s.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head, self.head_dist |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
self.global_pool = global_pool |
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
self.head_dist = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
@torch.jit.ignore |
|
def set_distilled_training(self, enable=True): |
|
self.distilled_training = enable |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int]]] = None, |
|
norm: bool = False, |
|
stop_early: bool = False, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
|
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if int, all if None, select matching indices if sequence |
|
norm: Apply norm layer to compatible intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
Returns: |
|
|
|
""" |
|
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' |
|
intermediates = [] |
|
take_indices, max_index = feature_take_indices(len(self.stages), indices) |
|
|
|
|
|
x = self.stem(x) |
|
B, C, H, W = x.shape |
|
|
|
last_idx = self.num_stages - 1 |
|
if torch.jit.is_scripting() or not stop_early: |
|
stages = self.stages |
|
else: |
|
stages = self.stages[:max_index + 1] |
|
feat_idx = 0 |
|
for feat_idx, stage in enumerate(stages): |
|
x = stage(x) |
|
if feat_idx < last_idx: |
|
B, C, H, W = x.shape |
|
if feat_idx in take_indices: |
|
if feat_idx == last_idx: |
|
x_inter = self.norm(x) if norm else x |
|
intermediates.append(x_inter.reshape(B, H // 2, W // 2, -1).permute(0, 3, 1, 2)) |
|
else: |
|
intermediates.append(x) |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
if feat_idx == last_idx: |
|
x = self.norm(x) |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
indices: Union[int, List[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
take_indices, max_index = feature_take_indices(len(self.stages), indices) |
|
self.stages = self.stages[:max_index + 1] |
|
if prune_norm: |
|
self.norm = nn.Identity() |
|
if prune_head: |
|
self.reset_classifier(0, '') |
|
return take_indices |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
x = self.stages(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
if self.global_pool == 'avg': |
|
x = x.mean(dim=1) |
|
x = self.head_drop(x) |
|
if pre_logits: |
|
return x |
|
x, x_dist = self.head(x), self.head_dist(x) |
|
if self.distilled_training and self.training and not torch.jit.is_scripting(): |
|
|
|
return x, x_dist |
|
else: |
|
|
|
return (x + x_dist) / 2 |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
""" Remap original checkpoints -> timm """ |
|
if 'stem.0.weight' in state_dict: |
|
return state_dict |
|
|
|
out_dict = {} |
|
import re |
|
stage_idx = 0 |
|
for k, v in state_dict.items(): |
|
if k.startswith('patch_embed'): |
|
k = k.replace('patch_embed.0', 'stem.conv1') |
|
k = k.replace('patch_embed.1', 'stem.norm1') |
|
k = k.replace('patch_embed.3', 'stem.conv2') |
|
k = k.replace('patch_embed.4', 'stem.norm2') |
|
|
|
if re.match(r'network\.(\d+)\.proj\.weight', k): |
|
stage_idx += 1 |
|
k = re.sub(r'network.(\d+).(\d+)', f'stages.{stage_idx}.blocks.\\2', k) |
|
k = re.sub(r'network.(\d+).proj', f'stages.{stage_idx}.downsample.conv', k) |
|
k = re.sub(r'network.(\d+).norm', f'stages.{stage_idx}.downsample.norm', k) |
|
|
|
k = re.sub(r'layer_scale_([0-9])', r'ls\1.gamma', k) |
|
k = k.replace('dist_head', 'head_dist') |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True, |
|
'crop_pct': .95, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.conv1', 'classifier': ('head', 'head_dist'), |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'efficientformer_l1.snap_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'efficientformer_l3.snap_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'efficientformer_l7.snap_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
}) |
|
|
|
|
|
def _create_efficientformer(variant, pretrained=False, **kwargs): |
|
out_indices = kwargs.pop('out_indices', 4) |
|
model = build_model_with_cfg( |
|
EfficientFormer, variant, pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientformer_l1(pretrained=False, **kwargs) -> EfficientFormer: |
|
model_args = dict( |
|
depths=EfficientFormer_depth['l1'], |
|
embed_dims=EfficientFormer_width['l1'], |
|
num_vit=1, |
|
) |
|
return _create_efficientformer('efficientformer_l1', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientformer_l3(pretrained=False, **kwargs) -> EfficientFormer: |
|
model_args = dict( |
|
depths=EfficientFormer_depth['l3'], |
|
embed_dims=EfficientFormer_width['l3'], |
|
num_vit=4, |
|
) |
|
return _create_efficientformer('efficientformer_l3', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientformer_l7(pretrained=False, **kwargs) -> EfficientFormer: |
|
model_args = dict( |
|
depths=EfficientFormer_depth['l7'], |
|
embed_dims=EfficientFormer_width['l7'], |
|
num_vit=8, |
|
) |
|
return _create_efficientformer('efficientformer_l7', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|