|
""" CrossViT Model |
|
|
|
@inproceedings{ |
|
chen2021crossvit, |
|
title={{CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification}}, |
|
author={Chun-Fu (Richard) Chen and Quanfu Fan and Rameswar Panda}, |
|
booktitle={International Conference on Computer Vision (ICCV)}, |
|
year={2021} |
|
} |
|
|
|
Paper link: https://arxiv.org/abs/2103.14899 |
|
Original code: https://github.com/IBM/CrossViT/blob/main/models/crossvit.py |
|
|
|
NOTE: model names have been renamed from originals to represent actual input res all *_224 -> *_240 and *_384 -> *_408 |
|
|
|
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Modifed from Timm. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py |
|
|
|
""" |
|
from functools import partial |
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
import torch.hub |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import DropPath, to_2tuple, trunc_normal_, _assert |
|
from ._builder import build_model_with_cfg |
|
from ._features_fx import register_notrace_function |
|
from ._registry import register_model, generate_default_cfgs |
|
from .vision_transformer import Block |
|
|
|
__all__ = ['CrossVit'] |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, multi_conv=False): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
if multi_conv: |
|
if patch_size[0] == 12: |
|
self.proj = nn.Sequential( |
|
nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=3, padding=0), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1), |
|
) |
|
elif patch_size[0] == 16: |
|
self.proj = nn.Sequential( |
|
nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=2, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=2, padding=1), |
|
) |
|
else: |
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
|
|
_assert(H == self.img_size[0], |
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") |
|
_assert(W == self.img_size[1], |
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") |
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
attn_drop=0., |
|
proj_drop=0., |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = head_dim ** -0.5 |
|
|
|
self.wq = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.wk = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.wv = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
|
|
q = self.wq(x[:, 0:1, ...]).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, 1, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class CrossAttentionBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
proj_drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = CrossAttention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = x[:, 0:1, ...] + self.drop_path(self.attn(self.norm1(x))) |
|
return x |
|
|
|
|
|
class MultiScaleBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
patches, |
|
depth, |
|
num_heads, |
|
mlp_ratio, |
|
qkv_bias=False, |
|
proj_drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
): |
|
super().__init__() |
|
|
|
num_branches = len(dim) |
|
self.num_branches = num_branches |
|
|
|
self.blocks = nn.ModuleList() |
|
for d in range(num_branches): |
|
tmp = [] |
|
for i in range(depth[d]): |
|
tmp.append(Block( |
|
dim=dim[d], |
|
num_heads=num_heads[d], |
|
mlp_ratio=mlp_ratio[d], |
|
qkv_bias=qkv_bias, |
|
proj_drop=proj_drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i], |
|
norm_layer=norm_layer, |
|
)) |
|
if len(tmp) != 0: |
|
self.blocks.append(nn.Sequential(*tmp)) |
|
|
|
if len(self.blocks) == 0: |
|
self.blocks = None |
|
|
|
self.projs = nn.ModuleList() |
|
for d in range(num_branches): |
|
if dim[d] == dim[(d + 1) % num_branches] and False: |
|
tmp = [nn.Identity()] |
|
else: |
|
tmp = [norm_layer(dim[d]), act_layer(), nn.Linear(dim[d], dim[(d + 1) % num_branches])] |
|
self.projs.append(nn.Sequential(*tmp)) |
|
|
|
self.fusion = nn.ModuleList() |
|
for d in range(num_branches): |
|
d_ = (d + 1) % num_branches |
|
nh = num_heads[d_] |
|
if depth[-1] == 0: |
|
self.fusion.append( |
|
CrossAttentionBlock( |
|
dim=dim[d_], |
|
num_heads=nh, |
|
mlp_ratio=mlp_ratio[d], |
|
qkv_bias=qkv_bias, |
|
proj_drop=proj_drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[-1], |
|
norm_layer=norm_layer, |
|
)) |
|
else: |
|
tmp = [] |
|
for _ in range(depth[-1]): |
|
tmp.append(CrossAttentionBlock( |
|
dim=dim[d_], |
|
num_heads=nh, |
|
mlp_ratio=mlp_ratio[d], |
|
qkv_bias=qkv_bias, |
|
proj_drop=proj_drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[-1], |
|
norm_layer=norm_layer, |
|
)) |
|
self.fusion.append(nn.Sequential(*tmp)) |
|
|
|
self.revert_projs = nn.ModuleList() |
|
for d in range(num_branches): |
|
if dim[(d + 1) % num_branches] == dim[d] and False: |
|
tmp = [nn.Identity()] |
|
else: |
|
tmp = [norm_layer(dim[(d + 1) % num_branches]), act_layer(), |
|
nn.Linear(dim[(d + 1) % num_branches], dim[d])] |
|
self.revert_projs.append(nn.Sequential(*tmp)) |
|
|
|
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: |
|
|
|
outs_b = [] |
|
for i, block in enumerate(self.blocks): |
|
outs_b.append(block(x[i])) |
|
|
|
|
|
proj_cls_token = torch.jit.annotate(List[torch.Tensor], []) |
|
for i, proj in enumerate(self.projs): |
|
proj_cls_token.append(proj(outs_b[i][:, 0:1, ...])) |
|
|
|
|
|
outs = [] |
|
for i, (fusion, revert_proj) in enumerate(zip(self.fusion, self.revert_projs)): |
|
tmp = torch.cat((proj_cls_token[i], outs_b[(i + 1) % self.num_branches][:, 1:, ...]), dim=1) |
|
tmp = fusion(tmp) |
|
reverted_proj_cls_token = revert_proj(tmp[:, 0:1, ...]) |
|
tmp = torch.cat((reverted_proj_cls_token, outs_b[i][:, 1:, ...]), dim=1) |
|
outs.append(tmp) |
|
return outs |
|
|
|
|
|
def _compute_num_patches(img_size, patches): |
|
return [i[0] // p * i[1] // p for i, p in zip(img_size, patches)] |
|
|
|
|
|
@register_notrace_function |
|
def scale_image(x, ss: Tuple[int, int], crop_scale: bool = False): |
|
""" |
|
Pulled out of CrossViT.forward_features to bury conditional logic in a leaf node for FX tracing. |
|
Args: |
|
x (Tensor): input image |
|
ss (tuple[int, int]): height and width to scale to |
|
crop_scale (bool): whether to crop instead of interpolate to achieve the desired scale. Defaults to False |
|
Returns: |
|
Tensor: the "scaled" image batch tensor |
|
""" |
|
H, W = x.shape[-2:] |
|
if H != ss[0] or W != ss[1]: |
|
if crop_scale and ss[0] <= H and ss[1] <= W: |
|
cu, cl = int(round((H - ss[0]) / 2.)), int(round((W - ss[1]) / 2.)) |
|
x = x[:, :, cu:cu + ss[0], cl:cl + ss[1]] |
|
else: |
|
x = torch.nn.functional.interpolate(x, size=ss, mode='bicubic', align_corners=False) |
|
return x |
|
|
|
|
|
class CrossVit(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
img_scale=(1.0, 1.0), |
|
patch_size=(8, 16), |
|
in_chans=3, |
|
num_classes=1000, |
|
embed_dim=(192, 384), |
|
depth=((1, 3, 1), (1, 3, 1), (1, 3, 1)), |
|
num_heads=(6, 12), |
|
mlp_ratio=(2., 2., 4.), |
|
multi_conv=False, |
|
crop_scale=False, |
|
qkv_bias=True, |
|
drop_rate=0., |
|
pos_drop_rate=0., |
|
proj_drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
global_pool='token', |
|
): |
|
super().__init__() |
|
assert global_pool in ('token', 'avg') |
|
|
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
self.img_size = to_2tuple(img_size) |
|
img_scale = to_2tuple(img_scale) |
|
self.img_size_scaled = [tuple([int(sj * si) for sj in self.img_size]) for si in img_scale] |
|
self.crop_scale = crop_scale |
|
num_patches = _compute_num_patches(self.img_size_scaled, patch_size) |
|
self.num_branches = len(patch_size) |
|
self.embed_dim = embed_dim |
|
self.num_features = self.head_hidden_size = sum(embed_dim) |
|
self.patch_embed = nn.ModuleList() |
|
|
|
|
|
for i in range(self.num_branches): |
|
setattr(self, f'pos_embed_{i}', nn.Parameter(torch.zeros(1, 1 + num_patches[i], embed_dim[i]))) |
|
setattr(self, f'cls_token_{i}', nn.Parameter(torch.zeros(1, 1, embed_dim[i]))) |
|
|
|
for im_s, p, d in zip(self.img_size_scaled, patch_size, embed_dim): |
|
self.patch_embed.append( |
|
PatchEmbed( |
|
img_size=im_s, |
|
patch_size=p, |
|
in_chans=in_chans, |
|
embed_dim=d, |
|
multi_conv=multi_conv, |
|
)) |
|
|
|
self.pos_drop = nn.Dropout(p=pos_drop_rate) |
|
|
|
total_depth = sum([sum(x[-2:]) for x in depth]) |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, total_depth)] |
|
dpr_ptr = 0 |
|
self.blocks = nn.ModuleList() |
|
for idx, block_cfg in enumerate(depth): |
|
curr_depth = max(block_cfg[:-1]) + block_cfg[-1] |
|
dpr_ = dpr[dpr_ptr:dpr_ptr + curr_depth] |
|
blk = MultiScaleBlock( |
|
embed_dim, |
|
num_patches, |
|
block_cfg, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
proj_drop=proj_drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr_, |
|
norm_layer=norm_layer, |
|
) |
|
dpr_ptr += curr_depth |
|
self.blocks.append(blk) |
|
|
|
self.norm = nn.ModuleList([norm_layer(embed_dim[i]) for i in range(self.num_branches)]) |
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = nn.ModuleList([ |
|
nn.Linear(embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() |
|
for i in range(self.num_branches)]) |
|
|
|
for i in range(self.num_branches): |
|
trunc_normal_(getattr(self, f'pos_embed_{i}'), std=.02) |
|
trunc_normal_(getattr(self, f'cls_token_{i}'), std=.02) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
out = set() |
|
for i in range(self.num_branches): |
|
out.add(f'cls_token_{i}') |
|
pe = getattr(self, f'pos_embed_{i}', None) |
|
if pe is not None and pe.requires_grad: |
|
out.add(f'pos_embed_{i}') |
|
return out |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^cls_token|pos_embed|patch_embed', |
|
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
assert not enable, 'gradient checkpointing not supported' |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
assert global_pool in ('token', 'avg') |
|
self.global_pool = global_pool |
|
self.head = nn.ModuleList([ |
|
nn.Linear(self.embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() |
|
for i in range(self.num_branches) |
|
]) |
|
|
|
def forward_features(self, x) -> List[torch.Tensor]: |
|
B = x.shape[0] |
|
xs = [] |
|
for i, patch_embed in enumerate(self.patch_embed): |
|
x_ = x |
|
ss = self.img_size_scaled[i] |
|
x_ = scale_image(x_, ss, self.crop_scale) |
|
x_ = patch_embed(x_) |
|
cls_tokens = self.cls_token_0 if i == 0 else self.cls_token_1 |
|
cls_tokens = cls_tokens.expand(B, -1, -1) |
|
x_ = torch.cat((cls_tokens, x_), dim=1) |
|
pos_embed = self.pos_embed_0 if i == 0 else self.pos_embed_1 |
|
x_ = x_ + pos_embed |
|
x_ = self.pos_drop(x_) |
|
xs.append(x_) |
|
|
|
for i, blk in enumerate(self.blocks): |
|
xs = blk(xs) |
|
|
|
|
|
xs = [norm(xs[i]) for i, norm in enumerate(self.norm)] |
|
return xs |
|
|
|
def forward_head(self, xs: List[torch.Tensor], pre_logits: bool = False) -> torch.Tensor: |
|
xs = [x[:, 1:].mean(dim=1) for x in xs] if self.global_pool == 'avg' else [x[:, 0] for x in xs] |
|
xs = [self.head_drop(x) for x in xs] |
|
if pre_logits or isinstance(self.head[0], nn.Identity): |
|
return torch.cat([x for x in xs], dim=1) |
|
return torch.mean(torch.stack([head(xs[i]) for i, head in enumerate(self.head)], dim=0), dim=0) |
|
|
|
def forward(self, x): |
|
xs = self.forward_features(x) |
|
x = self.forward_head(xs) |
|
return x |
|
|
|
|
|
def _create_crossvit(variant, pretrained=False, **kwargs): |
|
if kwargs.get('features_only', None): |
|
raise RuntimeError('features_only not implemented for Vision Transformer models.') |
|
|
|
def pretrained_filter_fn(state_dict): |
|
new_state_dict = {} |
|
for key in state_dict.keys(): |
|
if 'pos_embed' in key or 'cls_token' in key: |
|
new_key = key.replace(".", "_") |
|
else: |
|
new_key = key |
|
new_state_dict[new_key] = state_dict[key] |
|
return new_state_dict |
|
|
|
return build_model_with_cfg( |
|
CrossVit, |
|
variant, |
|
pretrained, |
|
pretrained_filter_fn=pretrained_filter_fn, |
|
**kwargs, |
|
) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 240, 240), 'pool_size': None, 'crop_pct': 0.875, |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True, |
|
'first_conv': ('patch_embed.0.proj', 'patch_embed.1.proj'), |
|
'classifier': ('head.0', 'head.1'), |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'crossvit_15_240.in1k': _cfg(hf_hub_id='timm/'), |
|
'crossvit_15_dagger_240.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), |
|
), |
|
'crossvit_15_dagger_408.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0, |
|
), |
|
'crossvit_18_240.in1k': _cfg(hf_hub_id='timm/'), |
|
'crossvit_18_dagger_240.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), |
|
), |
|
'crossvit_18_dagger_408.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0, |
|
), |
|
'crossvit_9_240.in1k': _cfg(hf_hub_id='timm/'), |
|
'crossvit_9_dagger_240.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), |
|
), |
|
'crossvit_base_240.in1k': _cfg(hf_hub_id='timm/'), |
|
'crossvit_small_240.in1k': _cfg(hf_hub_id='timm/'), |
|
'crossvit_tiny_240.in1k': _cfg(hf_hub_id='timm/'), |
|
}) |
|
|
|
|
|
@register_model |
|
def crossvit_tiny_240(pretrained=False, **kwargs) -> CrossVit: |
|
model_args = dict( |
|
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[96, 192], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], |
|
num_heads=[3, 3], mlp_ratio=[4, 4, 1]) |
|
model = _create_crossvit(variant='crossvit_tiny_240', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def crossvit_small_240(pretrained=False, **kwargs) -> CrossVit: |
|
model_args = dict( |
|
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], |
|
num_heads=[6, 6], mlp_ratio=[4, 4, 1]) |
|
model = _create_crossvit(variant='crossvit_small_240', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def crossvit_base_240(pretrained=False, **kwargs) -> CrossVit: |
|
model_args = dict( |
|
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[384, 768], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], |
|
num_heads=[12, 12], mlp_ratio=[4, 4, 1]) |
|
model = _create_crossvit(variant='crossvit_base_240', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def crossvit_9_240(pretrained=False, **kwargs) -> CrossVit: |
|
model_args = dict( |
|
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]], |
|
num_heads=[4, 4], mlp_ratio=[3, 3, 1]) |
|
model = _create_crossvit(variant='crossvit_9_240', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def crossvit_15_240(pretrained=False, **kwargs) -> CrossVit: |
|
model_args = dict( |
|
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], |
|
num_heads=[6, 6], mlp_ratio=[3, 3, 1]) |
|
model = _create_crossvit(variant='crossvit_15_240', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def crossvit_18_240(pretrained=False, **kwargs) -> CrossVit: |
|
model_args = dict( |
|
img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], |
|
num_heads=[7, 7], mlp_ratio=[3, 3, 1], **kwargs) |
|
model = _create_crossvit(variant='crossvit_18_240', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def crossvit_9_dagger_240(pretrained=False, **kwargs) -> CrossVit: |
|
model_args = dict( |
|
img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]], |
|
num_heads=[4, 4], mlp_ratio=[3, 3, 1], multi_conv=True) |
|
model = _create_crossvit(variant='crossvit_9_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def crossvit_15_dagger_240(pretrained=False, **kwargs) -> CrossVit: |
|
model_args = dict( |
|
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], |
|
num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True) |
|
model = _create_crossvit(variant='crossvit_15_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def crossvit_15_dagger_408(pretrained=False, **kwargs) -> CrossVit: |
|
model_args = dict( |
|
img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], |
|
num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True) |
|
model = _create_crossvit(variant='crossvit_15_dagger_408', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def crossvit_18_dagger_240(pretrained=False, **kwargs) -> CrossVit: |
|
model_args = dict( |
|
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], |
|
num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True) |
|
model = _create_crossvit(variant='crossvit_18_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def crossvit_18_dagger_408(pretrained=False, **kwargs) -> CrossVit: |
|
model_args = dict( |
|
img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], |
|
num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True) |
|
model = _create_crossvit(variant='crossvit_18_dagger_408', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|