|
""" ConvMixer |
|
|
|
""" |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import SelectAdaptivePool2d |
|
from ._registry import register_model, generate_default_cfgs |
|
from ._builder import build_model_with_cfg |
|
from ._manipulate import checkpoint_seq |
|
|
|
__all__ = ['ConvMixer'] |
|
|
|
|
|
class Residual(nn.Module): |
|
def __init__(self, fn): |
|
super().__init__() |
|
self.fn = fn |
|
|
|
def forward(self, x): |
|
return self.fn(x) + x |
|
|
|
|
|
class ConvMixer(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
depth, |
|
kernel_size=9, |
|
patch_size=7, |
|
in_chans=3, |
|
num_classes=1000, |
|
global_pool='avg', |
|
drop_rate=0., |
|
act_layer=nn.GELU, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.num_features = self.head_hidden_size = dim |
|
self.grad_checkpointing = False |
|
|
|
self.stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dim, kernel_size=patch_size, stride=patch_size), |
|
act_layer(), |
|
nn.BatchNorm2d(dim) |
|
) |
|
self.blocks = nn.Sequential( |
|
*[nn.Sequential( |
|
Residual(nn.Sequential( |
|
nn.Conv2d(dim, dim, kernel_size, groups=dim, padding="same"), |
|
act_layer(), |
|
nn.BatchNorm2d(dim) |
|
)), |
|
nn.Conv2d(dim, dim, kernel_size=1), |
|
act_layer(), |
|
nn.BatchNorm2d(dim) |
|
) for i in range(depth)] |
|
) |
|
self.pooling = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) |
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = nn.Linear(dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict(stem=r'^stem', blocks=r'^blocks\.(\d+)') |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
self.pooling = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) |
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
x = self.pooling(x) |
|
x = self.head_drop(x) |
|
return x if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def _create_convmixer(variant, pretrained=False, **kwargs): |
|
if kwargs.get('features_only', None): |
|
raise RuntimeError('features_only not implemented for ConvMixer models.') |
|
|
|
return build_model_with_cfg(ConvMixer, variant, pretrained, **kwargs) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .96, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head', |
|
'first_conv': 'stem.0', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'convmixer_1536_20.in1k': _cfg(hf_hub_id='timm/'), |
|
'convmixer_768_32.in1k': _cfg(hf_hub_id='timm/'), |
|
'convmixer_1024_20_ks9_p14.in1k': _cfg(hf_hub_id='timm/') |
|
}) |
|
|
|
|
|
|
|
@register_model |
|
def convmixer_1536_20(pretrained=False, **kwargs) -> ConvMixer: |
|
model_args = dict(dim=1536, depth=20, kernel_size=9, patch_size=7, **kwargs) |
|
return _create_convmixer('convmixer_1536_20', pretrained, **model_args) |
|
|
|
|
|
@register_model |
|
def convmixer_768_32(pretrained=False, **kwargs) -> ConvMixer: |
|
model_args = dict(dim=768, depth=32, kernel_size=7, patch_size=7, act_layer=nn.ReLU, **kwargs) |
|
return _create_convmixer('convmixer_768_32', pretrained, **model_args) |
|
|
|
|
|
@register_model |
|
def convmixer_1024_20_ks9_p14(pretrained=False, **kwargs) -> ConvMixer: |
|
model_args = dict(dim=1024, depth=20, kernel_size=9, patch_size=14, **kwargs) |
|
return _create_convmixer('convmixer_1024_20_ks9_p14', pretrained, **model_args) |