meg's picture
meg HF staff
Add files using upload-large-folder tool
ad283e4 verified
raw
history blame
15.3 kB
""" ConViT Model
@article{d2021convit,
title={ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases},
author={d'Ascoli, St{\'e}phane and Touvron, Hugo and Leavitt, Matthew and Morcos, Ari and Biroli, Giulio and Sagun, Levent},
journal={arXiv preprint arXiv:2103.10697},
year={2021}
}
Paper link: https://arxiv.org/abs/2103.10697
Original code: https://github.com/facebookresearch/convit, original copyright below
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.
#
'''These modules are adapted from those of timm, see
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
'''
from typing import Optional
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, trunc_normal_, PatchEmbed, Mlp, LayerNorm, HybridEmbed
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_module
from ._registry import register_model, generate_default_cfgs
__all__ = ['ConVit']
@register_notrace_module # reason: FX can't symbolically trace control flow in forward method
class GPSA(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
attn_drop=0.,
proj_drop=0.,
locality_strength=1.,
):
super().__init__()
self.num_heads = num_heads
self.dim = dim
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.locality_strength = locality_strength
self.qk = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.v = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.pos_proj = nn.Linear(3, num_heads)
self.proj_drop = nn.Dropout(proj_drop)
self.gating_param = nn.Parameter(torch.ones(self.num_heads))
self.rel_indices: torch.Tensor = torch.zeros(1, 1, 1, 3) # silly torchscript hack, won't work with None
def forward(self, x):
B, N, C = x.shape
if self.rel_indices is None or self.rel_indices.shape[1] != N:
self.rel_indices = self.get_rel_indices(N)
attn = self.get_attention(x)
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def get_attention(self, x):
B, N, C = x.shape
qk = self.qk(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k = qk[0], qk[1]
pos_score = self.rel_indices.expand(B, -1, -1, -1)
pos_score = self.pos_proj(pos_score).permute(0, 3, 1, 2)
patch_score = (q @ k.transpose(-2, -1)) * self.scale
patch_score = patch_score.softmax(dim=-1)
pos_score = pos_score.softmax(dim=-1)
gating = self.gating_param.view(1, -1, 1, 1)
attn = (1. - torch.sigmoid(gating)) * patch_score + torch.sigmoid(gating) * pos_score
attn /= attn.sum(dim=-1).unsqueeze(-1)
attn = self.attn_drop(attn)
return attn
def get_attention_map(self, x, return_map=False):
attn_map = self.get_attention(x).mean(0) # average over batch
distances = self.rel_indices.squeeze()[:, :, -1] ** .5
dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / distances.size(0)
if return_map:
return dist, attn_map
else:
return dist
def local_init(self):
self.v.weight.data.copy_(torch.eye(self.dim))
locality_distance = 1 # max(1,1/locality_strength**.5)
kernel_size = int(self.num_heads ** .5)
center = (kernel_size - 1) / 2 if kernel_size % 2 == 0 else kernel_size // 2
for h1 in range(kernel_size):
for h2 in range(kernel_size):
position = h1 + kernel_size * h2
self.pos_proj.weight.data[position, 2] = -1
self.pos_proj.weight.data[position, 1] = 2 * (h1 - center) * locality_distance
self.pos_proj.weight.data[position, 0] = 2 * (h2 - center) * locality_distance
self.pos_proj.weight.data *= self.locality_strength
def get_rel_indices(self, num_patches: int) -> torch.Tensor:
img_size = int(num_patches ** .5)
rel_indices = torch.zeros(1, num_patches, num_patches, 3)
ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1)
indx = ind.repeat(img_size, img_size)
indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1)
indd = indx ** 2 + indy ** 2
rel_indices[:, :, :, 2] = indd.unsqueeze(0)
rel_indices[:, :, :, 1] = indy.unsqueeze(0)
rel_indices[:, :, :, 0] = indx.unsqueeze(0)
device = self.qk.weight.device
return rel_indices.to(device)
class MHSA(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
attn_drop=0.,
proj_drop=0.,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def get_attention_map(self, x, return_map=False):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn_map = (q @ k.transpose(-2, -1)) * self.scale
attn_map = attn_map.softmax(dim=-1).mean(0)
img_size = int(N ** .5)
ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1)
indx = ind.repeat(img_size, img_size)
indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1)
indd = indx ** 2 + indy ** 2
distances = indd ** .5
distances = distances.to(x.device)
dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / N
if return_map:
return dist, attn_map
else:
return dist
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=LayerNorm,
use_gpsa=True,
locality_strength=1.,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.use_gpsa = use_gpsa
if self.use_gpsa:
self.attn = GPSA(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
locality_strength=locality_strength,
)
else:
self.attn = MHSA(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=proj_drop,
)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class ConVit(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
global_pool='token',
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=False,
drop_rate=0.,
pos_drop_rate=0.,
proj_drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
hybrid_backbone=None,
norm_layer=LayerNorm,
local_up_to_layer=3,
locality_strength=1.,
use_pos_embed=True,
):
super().__init__()
assert global_pool in ('', 'avg', 'token')
embed_dim *= num_heads
self.num_classes = num_classes
self.global_pool = global_pool
self.local_up_to_layer = local_up_to_layer
self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models
self.locality_strength = locality_strength
self.use_pos_embed = use_pos_embed
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
self.num_patches = num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_drop = nn.Dropout(p=pos_drop_rate)
if self.use_pos_embed:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.pos_embed, std=.02)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_drop=proj_drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
use_gpsa=i < local_up_to_layer,
locality_strength=locality_strength,
) for i in range(depth)])
self.norm = norm_layer(embed_dim)
# Classifier head
self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')]
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
for n, m in self.named_modules():
if hasattr(m, 'local_init'):
m.local_init()
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.head
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'token', 'avg')
self.global_pool = global_pool
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.patch_embed(x)
if self.use_pos_embed:
x = x + self.pos_embed
x = self.pos_drop(x)
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
for u, blk in enumerate(self.blocks):
if u == self.local_up_to_layer:
x = torch.cat((cls_tokens, x), dim=1)
x = blk(x)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
x = self.head_drop(x)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_convit(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
return build_model_with_cfg(ConVit, variant, pretrained, **kwargs)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
# ConViT
'convit_tiny.fb_in1k': _cfg(hf_hub_id='timm/'),
'convit_small.fb_in1k': _cfg(hf_hub_id='timm/'),
'convit_base.fb_in1k': _cfg(hf_hub_id='timm/')
})
@register_model
def convit_tiny(pretrained=False, **kwargs) -> ConVit:
model_args = dict(
local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=4)
model = _create_convit(variant='convit_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convit_small(pretrained=False, **kwargs) -> ConVit:
model_args = dict(
local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=9)
model = _create_convit(variant='convit_small', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convit_base(pretrained=False, **kwargs) -> ConVit:
model_args = dict(
local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=16)
model = _create_convit(variant='convit_base', pretrained=pretrained, **dict(model_args, **kwargs))
return model