meg's picture
meg HF staff
Add files using upload-large-folder tool
2c8d22f verified
raw
history blame
5.92 kB
""" Distributed training/validation utils
Hacked together by / Copyright 2020 Ross Wightman
"""
import logging
import os
from typing import Optional
import torch
from torch import distributed as dist
from .model import unwrap_model
_logger = logging.getLogger(__name__)
def reduce_tensor(tensor, n):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= n
return rt
def distribute_bn(model, world_size, reduce=False):
# ensure every node has the same running bn stats
for bn_name, bn_buf in unwrap_model(model).named_buffers(recurse=True):
if ('running_mean' in bn_name) or ('running_var' in bn_name):
if reduce:
# average bn stats across whole group
torch.distributed.all_reduce(bn_buf, op=dist.ReduceOp.SUM)
bn_buf /= float(world_size)
else:
# broadcast bn stats from rank 0 to whole group
torch.distributed.broadcast(bn_buf, 0)
def is_global_primary(args):
return args.rank == 0
def is_local_primary(args):
return args.local_rank == 0
def is_primary(args, local=False):
return is_local_primary(args) if local else is_global_primary(args)
def is_distributed_env():
if 'WORLD_SIZE' in os.environ:
return int(os.environ['WORLD_SIZE']) > 1
if 'SLURM_NTASKS' in os.environ:
return int(os.environ['SLURM_NTASKS']) > 1
return False
def world_info_from_env():
local_rank = 0
for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'):
if v in os.environ:
local_rank = int(os.environ[v])
break
global_rank = 0
for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'):
if v in os.environ:
global_rank = int(os.environ[v])
break
world_size = 1
for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'):
if v in os.environ:
world_size = int(os.environ[v])
break
return local_rank, global_rank, world_size
def init_distributed_device(args):
# Distributed training = training on more than one GPU.
# Works in both single and multi-node scenarios.
args.distributed = False
args.world_size = 1
args.rank = 0 # global rank
args.local_rank = 0
result = init_distributed_device_so(
device=getattr(args, 'device', 'cuda'),
dist_backend=getattr(args, 'dist_backend', None),
dist_url=getattr(args, 'dist_url', None),
)
args.device = result['device']
args.world_size = result['world_size']
args.rank = result['global_rank']
args.local_rank = result['local_rank']
args.distributed = result['distributed']
device = torch.device(args.device)
return device
def init_distributed_device_so(
device: str = 'cuda',
dist_backend: Optional[str] = None,
dist_url: Optional[str] = None,
):
# Distributed training = training on more than one GPU.
# Works in both single and multi-node scenarios.
distributed = False
world_size = 1
global_rank = 0
local_rank = 0
device_type, *device_idx = device.split(':', maxsplit=1)
if dist_backend is None:
# FIXME: verify that ROCm transform nccl to rccl
dist_backends = {
"xpu": "ccl",
"hpu": "hccl",
"cuda": "nccl",
"npu": "hccl",
}
dist_backend = dist_backends.get(device_type, 'gloo')
dist_url = dist_url or 'env://'
# TBD, support horovod?
# if args.horovod:
# import horovod.torch as hvd
# assert hvd is not None, "Horovod is not installed"
# hvd.init()
# args.local_rank = int(hvd.local_rank())
# args.rank = hvd.rank()
# args.world_size = hvd.size()
# args.distributed = True
# os.environ['LOCAL_RANK'] = str(args.local_rank)
# os.environ['RANK'] = str(args.rank)
# os.environ['WORLD_SIZE'] = str(args.world_size)
if is_distributed_env():
if 'SLURM_PROCID' in os.environ:
# DDP via SLURM
local_rank, global_rank, world_size = world_info_from_env()
# SLURM var -> torch.distributed vars in case needed
os.environ['LOCAL_RANK'] = str(local_rank)
os.environ['RANK'] = str(global_rank)
os.environ['WORLD_SIZE'] = str(world_size)
torch.distributed.init_process_group(
backend=dist_backend,
init_method=dist_url,
world_size=world_size,
rank=global_rank,
)
else:
# DDP via torchrun, torch.distributed.launch
local_rank, _, _ = world_info_from_env()
torch.distributed.init_process_group(
backend=dist_backend,
init_method=dist_url,
)
world_size = torch.distributed.get_world_size()
global_rank = torch.distributed.get_rank()
distributed = True
if device_type == 'cuda':
assert torch.cuda.is_available(), f'CUDA is not available but {device} was specified.'
if device_type == 'npu':
assert torch.npu.is_available(), f'Ascend NPU is not available but {device} was specified.'
if distributed and device != 'cpu':
# Ignore manually specified device index in distributed mode and
# override with resolved local rank, fewer headaches in most setups.
if device_idx:
_logger.warning(f'device index {device_idx[0]} removed from specified ({device}).')
device = f'{device_type}:{local_rank}'
if device.startswith('cuda:'):
torch.cuda.set_device(device)
return dict(
device=device,
global_rank=global_rank,
local_rank=local_rank,
world_size=world_size,
distributed=distributed,
)