|
""" Normalization + Activation Layers |
|
|
|
Provides Norm+Act fns for standard PyTorch norm layers such as |
|
* BatchNorm |
|
* GroupNorm |
|
* LayerNorm |
|
|
|
This allows swapping with alternative layers that are natively both norm + act such as |
|
* EvoNorm (evo_norm.py) |
|
* FilterResponseNorm (filter_response_norm.py) |
|
* InplaceABN (inplace_abn.py) |
|
|
|
Hacked together by / Copyright 2022 Ross Wightman |
|
""" |
|
from typing import Union, List, Optional, Any |
|
|
|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
from torchvision.ops.misc import FrozenBatchNorm2d |
|
|
|
from .create_act import create_act_layer |
|
from .fast_norm import is_fast_norm, fast_group_norm, fast_layer_norm |
|
from .trace_utils import _assert |
|
|
|
|
|
def _create_act(act_layer, act_kwargs=None, inplace=False, apply_act=True): |
|
act_kwargs = act_kwargs or {} |
|
act_kwargs.setdefault('inplace', inplace) |
|
act = None |
|
if apply_act: |
|
act = create_act_layer(act_layer, **act_kwargs) |
|
return nn.Identity() if act is None else act |
|
|
|
|
|
class BatchNormAct2d(nn.BatchNorm2d): |
|
"""BatchNorm + Activation |
|
|
|
This module performs BatchNorm + Activation in a manner that will remain backwards |
|
compatible with weights trained with separate bn, act. This is why we inherit from BN |
|
instead of composing it as a .bn member. |
|
""" |
|
def __init__( |
|
self, |
|
num_features, |
|
eps=1e-5, |
|
momentum=0.1, |
|
affine=True, |
|
track_running_stats=True, |
|
apply_act=True, |
|
act_layer=nn.ReLU, |
|
act_kwargs=None, |
|
inplace=True, |
|
drop_layer=None, |
|
device=None, |
|
dtype=None, |
|
): |
|
try: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super(BatchNormAct2d, self).__init__( |
|
num_features, |
|
eps=eps, |
|
momentum=momentum, |
|
affine=affine, |
|
track_running_stats=track_running_stats, |
|
**factory_kwargs, |
|
) |
|
except TypeError: |
|
|
|
super(BatchNormAct2d, self).__init__( |
|
num_features, |
|
eps=eps, |
|
momentum=momentum, |
|
affine=affine, |
|
track_running_stats=track_running_stats, |
|
) |
|
self.drop = drop_layer() if drop_layer is not None else nn.Identity() |
|
self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) |
|
|
|
def forward(self, x): |
|
|
|
_assert(x.ndim == 4, f'expected 4D input (got {x.ndim}D input)') |
|
|
|
|
|
|
|
|
|
if self.momentum is None: |
|
exponential_average_factor = 0.0 |
|
else: |
|
exponential_average_factor = self.momentum |
|
|
|
if self.training and self.track_running_stats: |
|
|
|
if self.num_batches_tracked is not None: |
|
self.num_batches_tracked.add_(1) |
|
if self.momentum is None: |
|
exponential_average_factor = 1.0 / float(self.num_batches_tracked) |
|
else: |
|
exponential_average_factor = self.momentum |
|
|
|
r""" |
|
Decide whether the mini-batch stats should be used for normalization rather than the buffers. |
|
Mini-batch stats are used in training mode, and in eval mode when buffers are None. |
|
""" |
|
if self.training: |
|
bn_training = True |
|
else: |
|
bn_training = (self.running_mean is None) and (self.running_var is None) |
|
|
|
r""" |
|
Buffers are only updated if they are to be tracked and we are in training mode. Thus they only need to be |
|
passed when the update should occur (i.e. in training mode when they are tracked), or when buffer stats are |
|
used for normalization (i.e. in eval mode when buffers are not None). |
|
""" |
|
x = F.batch_norm( |
|
x, |
|
|
|
self.running_mean if not self.training or self.track_running_stats else None, |
|
self.running_var if not self.training or self.track_running_stats else None, |
|
self.weight, |
|
self.bias, |
|
bn_training, |
|
exponential_average_factor, |
|
self.eps, |
|
) |
|
x = self.drop(x) |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
class SyncBatchNormAct(nn.SyncBatchNorm): |
|
|
|
|
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = super().forward(x) |
|
if hasattr(self, "drop"): |
|
x = self.drop(x) |
|
if hasattr(self, "act"): |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
def convert_sync_batchnorm(module, process_group=None): |
|
|
|
module_output = module |
|
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): |
|
if isinstance(module, BatchNormAct2d): |
|
|
|
module_output = SyncBatchNormAct( |
|
module.num_features, |
|
module.eps, |
|
module.momentum, |
|
module.affine, |
|
module.track_running_stats, |
|
process_group=process_group, |
|
) |
|
|
|
module_output.act = module.act |
|
module_output.drop = module.drop |
|
else: |
|
|
|
module_output = torch.nn.SyncBatchNorm( |
|
module.num_features, |
|
module.eps, |
|
module.momentum, |
|
module.affine, |
|
module.track_running_stats, |
|
process_group, |
|
) |
|
if module.affine: |
|
with torch.no_grad(): |
|
module_output.weight = module.weight |
|
module_output.bias = module.bias |
|
module_output.running_mean = module.running_mean |
|
module_output.running_var = module.running_var |
|
module_output.num_batches_tracked = module.num_batches_tracked |
|
if hasattr(module, "qconfig"): |
|
module_output.qconfig = module.qconfig |
|
for name, child in module.named_children(): |
|
module_output.add_module(name, convert_sync_batchnorm(child, process_group)) |
|
del module |
|
return module_output |
|
|
|
|
|
class FrozenBatchNormAct2d(torch.nn.Module): |
|
""" |
|
BatchNormAct2d where the batch statistics and the affine parameters are fixed |
|
|
|
Args: |
|
num_features (int): Number of features ``C`` from an expected input of size ``(N, C, H, W)`` |
|
eps (float): a value added to the denominator for numerical stability. Default: 1e-5 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_features: int, |
|
eps: float = 1e-5, |
|
apply_act=True, |
|
act_layer=nn.ReLU, |
|
act_kwargs=None, |
|
inplace=True, |
|
drop_layer=None, |
|
): |
|
super().__init__() |
|
self.eps = eps |
|
self.register_buffer("weight", torch.ones(num_features)) |
|
self.register_buffer("bias", torch.zeros(num_features)) |
|
self.register_buffer("running_mean", torch.zeros(num_features)) |
|
self.register_buffer("running_var", torch.ones(num_features)) |
|
|
|
self.drop = drop_layer() if drop_layer is not None else nn.Identity() |
|
self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) |
|
|
|
def _load_from_state_dict( |
|
self, |
|
state_dict: dict, |
|
prefix: str, |
|
local_metadata: dict, |
|
strict: bool, |
|
missing_keys: List[str], |
|
unexpected_keys: List[str], |
|
error_msgs: List[str], |
|
): |
|
num_batches_tracked_key = prefix + "num_batches_tracked" |
|
if num_batches_tracked_key in state_dict: |
|
del state_dict[num_batches_tracked_key] |
|
|
|
super()._load_from_state_dict( |
|
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
w = self.weight.reshape(1, -1, 1, 1) |
|
b = self.bias.reshape(1, -1, 1, 1) |
|
rv = self.running_var.reshape(1, -1, 1, 1) |
|
rm = self.running_mean.reshape(1, -1, 1, 1) |
|
scale = w * (rv + self.eps).rsqrt() |
|
bias = b - rm * scale |
|
x = x * scale + bias |
|
x = self.act(self.drop(x)) |
|
return x |
|
|
|
def __repr__(self) -> str: |
|
return f"{self.__class__.__name__}({self.weight.shape[0]}, eps={self.eps}, act={self.act})" |
|
|
|
|
|
def freeze_batch_norm_2d(module): |
|
""" |
|
Converts all `BatchNorm2d` and `SyncBatchNorm` or `BatchNormAct2d` and `SyncBatchNormAct2d` layers |
|
of provided module into `FrozenBatchNorm2d` or `FrozenBatchNormAct2d` respectively. |
|
|
|
Args: |
|
module (torch.nn.Module): Any PyTorch module. |
|
|
|
Returns: |
|
torch.nn.Module: Resulting module |
|
|
|
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 |
|
""" |
|
res = module |
|
if isinstance(module, (BatchNormAct2d, SyncBatchNormAct)): |
|
res = FrozenBatchNormAct2d(module.num_features) |
|
res.num_features = module.num_features |
|
res.affine = module.affine |
|
if module.affine: |
|
res.weight.data = module.weight.data.clone().detach() |
|
res.bias.data = module.bias.data.clone().detach() |
|
res.running_mean.data = module.running_mean.data |
|
res.running_var.data = module.running_var.data |
|
res.eps = module.eps |
|
res.drop = module.drop |
|
res.act = module.act |
|
elif isinstance(module, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)): |
|
res = FrozenBatchNorm2d(module.num_features) |
|
res.num_features = module.num_features |
|
res.affine = module.affine |
|
if module.affine: |
|
res.weight.data = module.weight.data.clone().detach() |
|
res.bias.data = module.bias.data.clone().detach() |
|
res.running_mean.data = module.running_mean.data |
|
res.running_var.data = module.running_var.data |
|
res.eps = module.eps |
|
else: |
|
for name, child in module.named_children(): |
|
new_child = freeze_batch_norm_2d(child) |
|
if new_child is not child: |
|
res.add_module(name, new_child) |
|
return res |
|
|
|
|
|
def unfreeze_batch_norm_2d(module): |
|
""" |
|
Converts all `FrozenBatchNorm2d` layers of provided module into `BatchNorm2d`. If `module` is itself and instance |
|
of `FrozenBatchNorm2d`, it is converted into `BatchNorm2d` and returned. Otherwise, the module is walked |
|
recursively and submodules are converted in place. |
|
|
|
Args: |
|
module (torch.nn.Module): Any PyTorch module. |
|
|
|
Returns: |
|
torch.nn.Module: Resulting module |
|
|
|
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 |
|
""" |
|
res = module |
|
if isinstance(module, FrozenBatchNormAct2d): |
|
res = BatchNormAct2d(module.num_features) |
|
if module.affine: |
|
res.weight.data = module.weight.data.clone().detach() |
|
res.bias.data = module.bias.data.clone().detach() |
|
res.running_mean.data = module.running_mean.data |
|
res.running_var.data = module.running_var.data |
|
res.eps = module.eps |
|
res.drop = module.drop |
|
res.act = module.act |
|
elif isinstance(module, FrozenBatchNorm2d): |
|
res = torch.nn.BatchNorm2d(module.num_features) |
|
if module.affine: |
|
res.weight.data = module.weight.data.clone().detach() |
|
res.bias.data = module.bias.data.clone().detach() |
|
res.running_mean.data = module.running_mean.data |
|
res.running_var.data = module.running_var.data |
|
res.eps = module.eps |
|
else: |
|
for name, child in module.named_children(): |
|
new_child = unfreeze_batch_norm_2d(child) |
|
if new_child is not child: |
|
res.add_module(name, new_child) |
|
return res |
|
|
|
|
|
def _num_groups(num_channels, num_groups, group_size): |
|
if group_size: |
|
assert num_channels % group_size == 0 |
|
return num_channels // group_size |
|
return num_groups |
|
|
|
|
|
class GroupNormAct(nn.GroupNorm): |
|
|
|
def __init__( |
|
self, |
|
num_channels, |
|
num_groups=32, |
|
eps=1e-5, |
|
affine=True, |
|
group_size=None, |
|
apply_act=True, |
|
act_layer=nn.ReLU, |
|
act_kwargs=None, |
|
inplace=True, |
|
drop_layer=None, |
|
): |
|
super(GroupNormAct, self).__init__( |
|
_num_groups(num_channels, num_groups, group_size), |
|
num_channels, |
|
eps=eps, |
|
affine=affine, |
|
) |
|
self.drop = drop_layer() if drop_layer is not None else nn.Identity() |
|
self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) |
|
|
|
self._fast_norm = is_fast_norm() |
|
|
|
def forward(self, x): |
|
if self._fast_norm: |
|
x = fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) |
|
else: |
|
x = F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) |
|
x = self.drop(x) |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
class GroupNorm1Act(nn.GroupNorm): |
|
def __init__( |
|
self, |
|
num_channels, |
|
eps=1e-5, |
|
affine=True, |
|
apply_act=True, |
|
act_layer=nn.ReLU, |
|
act_kwargs=None, |
|
inplace=True, |
|
drop_layer=None, |
|
): |
|
super(GroupNorm1Act, self).__init__(1, num_channels, eps=eps, affine=affine) |
|
self.drop = drop_layer() if drop_layer is not None else nn.Identity() |
|
self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) |
|
|
|
self._fast_norm = is_fast_norm() |
|
|
|
def forward(self, x): |
|
if self._fast_norm: |
|
x = fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) |
|
else: |
|
x = F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) |
|
x = self.drop(x) |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
class LayerNormAct(nn.LayerNorm): |
|
def __init__( |
|
self, |
|
normalization_shape: Union[int, List[int], torch.Size], |
|
eps=1e-5, |
|
affine=True, |
|
apply_act=True, |
|
act_layer=nn.ReLU, |
|
act_kwargs=None, |
|
inplace=True, |
|
drop_layer=None, |
|
): |
|
super(LayerNormAct, self).__init__(normalization_shape, eps=eps, elementwise_affine=affine) |
|
self.drop = drop_layer() if drop_layer is not None else nn.Identity() |
|
self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) |
|
|
|
self._fast_norm = is_fast_norm() |
|
|
|
def forward(self, x): |
|
if self._fast_norm: |
|
x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
else: |
|
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
x = self.drop(x) |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
class LayerNormAct2d(nn.LayerNorm): |
|
def __init__( |
|
self, |
|
num_channels, |
|
eps=1e-5, |
|
affine=True, |
|
apply_act=True, |
|
act_layer=nn.ReLU, |
|
act_kwargs=None, |
|
inplace=True, |
|
drop_layer=None, |
|
): |
|
super(LayerNormAct2d, self).__init__(num_channels, eps=eps, elementwise_affine=affine) |
|
self.drop = drop_layer() if drop_layer is not None else nn.Identity() |
|
self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) |
|
self._fast_norm = is_fast_norm() |
|
|
|
def forward(self, x): |
|
x = x.permute(0, 2, 3, 1) |
|
if self._fast_norm: |
|
x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
else: |
|
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
x = x.permute(0, 3, 1, 2) |
|
x = self.drop(x) |
|
x = self.act(x) |
|
return x |
|
|