meg's picture
meg HF staff
Add files using upload-large-folder tool
ad283e4 verified
raw
history blame
1.62 kB
""" Norm Layer Factory
Create norm modules by string (to mirror create_act and creat_norm-act fns)
Copyright 2022 Ross Wightman
"""
import functools
import types
from typing import Type
import torch.nn as nn
from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm, RmsNorm2d
from torchvision.ops.misc import FrozenBatchNorm2d
_NORM_MAP = dict(
batchnorm=nn.BatchNorm2d,
batchnorm2d=nn.BatchNorm2d,
batchnorm1d=nn.BatchNorm1d,
groupnorm=GroupNorm,
groupnorm1=GroupNorm1,
layernorm=LayerNorm,
layernorm2d=LayerNorm2d,
rmsnorm=RmsNorm,
rmsnorm2d=RmsNorm2d,
frozenbatchnorm2d=FrozenBatchNorm2d,
)
_NORM_TYPES = {m for n, m in _NORM_MAP.items()}
def create_norm_layer(layer_name, num_features, **kwargs):
layer = get_norm_layer(layer_name)
layer_instance = layer(num_features, **kwargs)
return layer_instance
def get_norm_layer(norm_layer):
if norm_layer is None:
return None
assert isinstance(norm_layer, (type, str, types.FunctionType, functools.partial))
norm_kwargs = {}
# unbind partial fn, so args can be rebound later
if isinstance(norm_layer, functools.partial):
norm_kwargs.update(norm_layer.keywords)
norm_layer = norm_layer.func
if isinstance(norm_layer, str):
if not norm_layer:
return None
layer_name = norm_layer.replace('_', '').lower()
norm_layer = _NORM_MAP[layer_name]
else:
norm_layer = norm_layer
if norm_kwargs:
norm_layer = functools.partial(norm_layer, **norm_kwargs) # bind/rebind args
return norm_layer