meg's picture
meg HF staff
Add files using upload-large-folder tool
c3fdff6 verified
raw
history blame
4.18 kB
""" Model / Layer Config singleton state
"""
import os
import warnings
from typing import Any, Optional
import torch
__all__ = [
'is_exportable', 'is_scriptable', 'is_no_jit', 'use_fused_attn',
'set_exportable', 'set_scriptable', 'set_no_jit', 'set_layer_config', 'set_fused_attn'
]
# Set to True if prefer to have layers with no jit optimization (includes activations)
_NO_JIT = False
# Set to True if prefer to have activation layers with no jit optimization
# NOTE not currently used as no difference between no_jit and no_activation jit as only layers obeying
# the jit flags so far are activations. This will change as more layers are updated and/or added.
_NO_ACTIVATION_JIT = False
# Set to True if exporting a model with Same padding via ONNX
_EXPORTABLE = False
# Set to True if wanting to use torch.jit.script on a model
_SCRIPTABLE = False
# use torch.scaled_dot_product_attention where possible
_HAS_FUSED_ATTN = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
if 'TIMM_FUSED_ATTN' in os.environ:
_USE_FUSED_ATTN = int(os.environ['TIMM_FUSED_ATTN'])
else:
_USE_FUSED_ATTN = 1 # 0 == off, 1 == on (for tested use), 2 == on (for experimental use)
def is_no_jit():
return _NO_JIT
class set_no_jit:
def __init__(self, mode: bool) -> None:
global _NO_JIT
self.prev = _NO_JIT
_NO_JIT = mode
def __enter__(self) -> None:
pass
def __exit__(self, *args: Any) -> bool:
global _NO_JIT
_NO_JIT = self.prev
return False
def is_exportable():
return _EXPORTABLE
class set_exportable:
def __init__(self, mode: bool) -> None:
global _EXPORTABLE
self.prev = _EXPORTABLE
_EXPORTABLE = mode
def __enter__(self) -> None:
pass
def __exit__(self, *args: Any) -> bool:
global _EXPORTABLE
_EXPORTABLE = self.prev
return False
def is_scriptable():
return _SCRIPTABLE
class set_scriptable:
def __init__(self, mode: bool) -> None:
global _SCRIPTABLE
self.prev = _SCRIPTABLE
_SCRIPTABLE = mode
def __enter__(self) -> None:
pass
def __exit__(self, *args: Any) -> bool:
global _SCRIPTABLE
_SCRIPTABLE = self.prev
return False
class set_layer_config:
""" Layer config context manager that allows setting all layer config flags at once.
If a flag arg is None, it will not change the current value.
"""
def __init__(
self,
scriptable: Optional[bool] = None,
exportable: Optional[bool] = None,
no_jit: Optional[bool] = None,
no_activation_jit: Optional[bool] = None):
global _SCRIPTABLE
global _EXPORTABLE
global _NO_JIT
global _NO_ACTIVATION_JIT
self.prev = _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT
if scriptable is not None:
_SCRIPTABLE = scriptable
if exportable is not None:
_EXPORTABLE = exportable
if no_jit is not None:
_NO_JIT = no_jit
if no_activation_jit is not None:
_NO_ACTIVATION_JIT = no_activation_jit
def __enter__(self) -> None:
pass
def __exit__(self, *args: Any) -> bool:
global _SCRIPTABLE
global _EXPORTABLE
global _NO_JIT
global _NO_ACTIVATION_JIT
_SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT = self.prev
return False
def use_fused_attn(experimental: bool = False) -> bool:
# NOTE: ONNX export cannot handle F.scaled_dot_product_attention as of pytorch 2.0
if not _HAS_FUSED_ATTN or _EXPORTABLE:
return False
if experimental:
return _USE_FUSED_ATTN > 1
return _USE_FUSED_ATTN > 0
def set_fused_attn(enable: bool = True, experimental: bool = False):
global _USE_FUSED_ATTN
if not _HAS_FUSED_ATTN:
warnings.warn('This version of pytorch does not have F.scaled_dot_product_attention, fused_attn flag ignored.')
return
if experimental and enable:
_USE_FUSED_ATTN = 2
elif enable:
_USE_FUSED_ATTN = 1
else:
_USE_FUSED_ATTN = 0