meg's picture
meg HF staff
Add files using upload-large-folder tool
c3fdff6 verified
raw
history blame
3.08 kB
"""
BlurPool layer inspired by
- Kornia's Max_BlurPool2d
- Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar`
Hacked together by Chris Ha and Ross Wightman
"""
from functools import partial
from typing import Optional, Type
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from .padding import get_padding
from .typing import LayerType
class BlurPool2d(nn.Module):
r"""Creates a module that computes blurs and downsample a given feature map.
See :cite:`zhang2019shiftinvar` for more details.
Corresponds to the Downsample class, which does blurring and subsampling
Args:
channels = Number of input channels
filt_size (int): binomial filter size for blurring. currently supports 3 (default) and 5.
stride (int): downsampling filter stride
Returns:
torch.Tensor: the transformed tensor.
"""
def __init__(
self,
channels: Optional[int] = None,
filt_size: int = 3,
stride: int = 2,
pad_mode: str = 'reflect',
) -> None:
super(BlurPool2d, self).__init__()
assert filt_size > 1
self.channels = channels
self.filt_size = filt_size
self.stride = stride
self.pad_mode = pad_mode
self.padding = [get_padding(filt_size, stride, dilation=1)] * 4
coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs.astype(np.float32))
blur_filter = (coeffs[:, None] * coeffs[None, :])[None, None, :, :]
if channels is not None:
blur_filter = blur_filter.repeat(self.channels, 1, 1, 1)
self.register_buffer('filt', blur_filter, persistent=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.pad(x, self.padding, mode=self.pad_mode)
if self.channels is None:
channels = x.shape[1]
weight = self.filt.expand(channels, 1, self.filt_size, self.filt_size)
else:
channels = self.channels
weight = self.filt
return F.conv2d(x, weight, stride=self.stride, groups=channels)
def create_aa(
aa_layer: LayerType,
channels: Optional[int] = None,
stride: int = 2,
enable: bool = True,
noop: Optional[Type[nn.Module]] = nn.Identity
) -> nn.Module:
""" Anti-aliasing """
if not aa_layer or not enable:
return noop() if noop is not None else None
if isinstance(aa_layer, str):
aa_layer = aa_layer.lower().replace('_', '').replace('-', '')
if aa_layer == 'avg' or aa_layer == 'avgpool':
aa_layer = nn.AvgPool2d
elif aa_layer == 'blur' or aa_layer == 'blurpool':
aa_layer = BlurPool2d
elif aa_layer == 'blurpc':
aa_layer = partial(BlurPool2d, pad_mode='constant')
else:
assert False, f"Unknown anti-aliasing layer ({aa_layer})."
try:
return aa_layer(channels=channels, stride=stride)
except TypeError as e:
return aa_layer(stride)