|
""" |
|
BlurPool layer inspired by |
|
- Kornia's Max_BlurPool2d |
|
- Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar` |
|
|
|
Hacked together by Chris Ha and Ross Wightman |
|
""" |
|
from functools import partial |
|
from typing import Optional, Type |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
from .padding import get_padding |
|
from .typing import LayerType |
|
|
|
|
|
class BlurPool2d(nn.Module): |
|
r"""Creates a module that computes blurs and downsample a given feature map. |
|
See :cite:`zhang2019shiftinvar` for more details. |
|
Corresponds to the Downsample class, which does blurring and subsampling |
|
|
|
Args: |
|
channels = Number of input channels |
|
filt_size (int): binomial filter size for blurring. currently supports 3 (default) and 5. |
|
stride (int): downsampling filter stride |
|
|
|
Returns: |
|
torch.Tensor: the transformed tensor. |
|
""" |
|
def __init__( |
|
self, |
|
channels: Optional[int] = None, |
|
filt_size: int = 3, |
|
stride: int = 2, |
|
pad_mode: str = 'reflect', |
|
) -> None: |
|
super(BlurPool2d, self).__init__() |
|
assert filt_size > 1 |
|
self.channels = channels |
|
self.filt_size = filt_size |
|
self.stride = stride |
|
self.pad_mode = pad_mode |
|
self.padding = [get_padding(filt_size, stride, dilation=1)] * 4 |
|
|
|
coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs.astype(np.float32)) |
|
blur_filter = (coeffs[:, None] * coeffs[None, :])[None, None, :, :] |
|
if channels is not None: |
|
blur_filter = blur_filter.repeat(self.channels, 1, 1, 1) |
|
self.register_buffer('filt', blur_filter, persistent=False) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = F.pad(x, self.padding, mode=self.pad_mode) |
|
if self.channels is None: |
|
channels = x.shape[1] |
|
weight = self.filt.expand(channels, 1, self.filt_size, self.filt_size) |
|
else: |
|
channels = self.channels |
|
weight = self.filt |
|
return F.conv2d(x, weight, stride=self.stride, groups=channels) |
|
|
|
|
|
def create_aa( |
|
aa_layer: LayerType, |
|
channels: Optional[int] = None, |
|
stride: int = 2, |
|
enable: bool = True, |
|
noop: Optional[Type[nn.Module]] = nn.Identity |
|
) -> nn.Module: |
|
""" Anti-aliasing """ |
|
if not aa_layer or not enable: |
|
return noop() if noop is not None else None |
|
|
|
if isinstance(aa_layer, str): |
|
aa_layer = aa_layer.lower().replace('_', '').replace('-', '') |
|
if aa_layer == 'avg' or aa_layer == 'avgpool': |
|
aa_layer = nn.AvgPool2d |
|
elif aa_layer == 'blur' or aa_layer == 'blurpool': |
|
aa_layer = BlurPool2d |
|
elif aa_layer == 'blurpc': |
|
aa_layer = partial(BlurPool2d, pad_mode='constant') |
|
|
|
else: |
|
assert False, f"Unknown anti-aliasing layer ({aa_layer})." |
|
|
|
try: |
|
return aa_layer(channels=channels, stride=stride) |
|
except TypeError as e: |
|
return aa_layer(stride) |
|
|